Repo

User Guide

Issue 01
Date 2023-08-07

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. i

Repo
User Guide Contents

Contents

T BefOre YOU STArt....... e iiieecieccecetcecncctesaeeseesnesseesassssssssssssssssssessssssssssssassssessssssssasssaasans 1
2 New Version (RECOMMENAEA)........ueeeiieeiceeeeccneeeecsneeecssnseeesssssecessssasesssssessssssssesssssases 2
2.1 OVEIVIEW....eieeteie ettt ettt ettt ettt s ettt sttt s e s st e s s et et ae s e £t s s e b e st eae s e st et as st et e asae s et st asaese bt asassesstssanassessennes 2
2.2 Git Installation and CONFIGUIAtION ...ttt bbb ss bbb bbb s s s s sanes 6
2.2.7 Installing @and CONFIGQUIING Git..ouiuoiieieeeeeieiniriesseissiseesse sttt sss s s st st ssss s sss s s sssss st sssssssasssssanssnsnns 6
2.2.2 Installing Git Bash fOr WINAOWS..........ceriririririrsissiscissssesie s ssassnnsns 6
2.2.3 Installing TOrtoiSEGIt fOr WINAOWS.........covuiurierierierireeie ettt ssssssess s sss st ssssssssssesssassssssssansnns 7
2.2.4 INSLALLING GIT FOI LINUX.euruiuiueiirieieireireirteeeis ettt e eas ettt st s sttt s s st e bbb eesseaseaseassnnens 9
2.2.5 INStAlliNg GIt FOr MACOS........coirieeeeeeee ettt sttt bbb bbb s s s bbb b s s nsssansans 9
2.3 Setting SSH Key or HTTPS Password for CodeArts Repo REPOSILOIY........ccovuiurririereeneerenisieiesisiesiesessessessanaans 10
2.3.7T OVEIVIEW..c.uiririieeeieeneietetseiseasessessese e ssesessessessese s ase e ss s s st s esease e st st st ssessesssesssasaetesassseseesessssesaesasssesssassessesaes 10
2.3.2 SSH KBYS....cuiieieieiriieieiiseieesetiseese e tises s ssse st e e s b bbbt 10
2.3.3 HTTPS PASSWOI.....oiueeiuienceneireireesetiretressetise e ease e sssesse s st s tssetsesae st s sse e sae s st aes st saetssessessensns 14
2.4 Migrating Data t0 COARAITS REPO......c.oiriiiiriirieeiieteie ettt sttt bbbt bbb eees 16
24T OVEBIVIEW ...ttt ettt ettt ettt a ettt b et st e st e et a e b et ae s e b et eae s et et eea A b ettt aeb et et e ae st et eas st esaeaeas 16
2.4.2 Migrating an SVN Repository t0 COAEAITS REPO........ouieierrieieieieiesieseesessans 16
2.4.3 Importing a Remote Git Repository t0 COAEAITS REPO......ccvuriierrerierieirieisise st ssssssssssssssssssanes 21
2.4.4 Uploading Local Code t0 COARAIS REPO......c.ocrurerreierieriresieieisseseesessessess s ssns 23
2.5 Creating @ COdeArtS REPO REPOSITONY ..ottt sss s sas s bbb sensesanes 24
2.5.7T OVEBIVIBW..c.tiieeieteieteeete ettt sttt ettt st s st s e st a e et et e et s s b et et ae s e s et eaese st e ae s s et et saab et et aeaesesetseas st esseanas 24
2.5.2 Creating an EMPLY REPOSITONY ...ttt sttt sasssssssssssssssssssssssssesasssssssessssessssessssesans 25
2.5.3 Creating @ Repository USING @ TEMPLAte.......ccciieieeierieerieieissetseeseesessssssss s tssesssssssssssssssssss st ssssssssssssssnsansnns 28
2.5.4 IMporting an EXEErNAl REPOSIEONY ..ot esssssssssssss st ssassnns 30
2.5.5 FOIKING @ REPOSITONY ...ttt st sess st st sses s s st s s essess s s bass s ssssnseennenen 32
2.6 Associating the COdeArts REPO REPOSITOIY........cciuiuriirieriieerieieireir sttt et es st st 36
2.7 Cloning or Downloading Code from CodeArts Repo to @ LOCal PC........coeeieieierineeseeeeeesesie s 37
2.7.1 OVEIVIEW...etieeeeetreesieeeieee sttt sastsesas s s s s s s s s s s s seassssasseeasseeasseeas s sas s ssesassessssseassseasseeasseeaeseeassesssbesesssesessesnnsesnssnsnnsen 38
2.7.2 Using SSH to Clone Code from CodeArts Repo to @ LOCAl PC......orrrirrieerseneeesisie e sisisssssssssssssanenns 38
2.7.3 Using HTTPS to Clone Code from CodeArts Repo to @ Local COMPULET........oerervrerereeneeneeneereriseeinenes 41
2.7.4 Downloading a Code Package ON @ BIrOWSENccieiiieiiieesieesiesesiesestessssesessssesssssssssssssssssssessssesssssssssesssssnans 45
2.8 USING COURAITS REPO.....cueuieeeieitireireieie ettt ettt stttk ettt s et sesnesas 45
2.8.1 VieWing the REPOSILOIY LiST.....ccioiiiieiieeeeeeieeicisieissi et ssssssssssss st st sssssssesassssssssesssssssssssssssansanes 46
2.8.2 VieWing RePOSITOIY DELAILS......c.coveierieriririeississiseisses st ssstssesssssss s st s ssssssssssssssssssssssssssssssssssssssassassssssnssessnses 47

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. i

Repo

User Guide Contents
2.8.3 Viewing RepOSItOry HOMEPAGE. ...ttt sttt sttt sttt 48
2.8.4 MANQAQING COUE FIleS..... ittt s st es sttt b et seseeanenas 51
2.8.4.1 MANAGING FIlES.....ouieeieiiieeieieeteeeirie ettt sttt ss s bbbt s s s b s bbbt s et s s b s s s s bbb ensessessesanen 51
2.8.4.2 MaANAGING COMIMILS....oiiiiiriitritirieiree ettt bttt st st se sttt b st ee b st se st e st e setssseeas 55
2.8.4.3 MANQAGING BraNCRES....... ittt ettt ettt ettt sanen 56
2.8.4.4 MANAGING TGS ...ttitririririeirieririeeiseesissesssistssstssssssssesassesasssssssssssssssssassssassssasssssssessssessssassssessssssssssssssssssssssnssssnssessssass 66
2.8.4.5 ManNQAGiNg COMPATISON.....cvuiiiirietrieiriaetreastsessisesetsesetssetsssesss st ssessssessssessssssssssessssssssssssssssasssenssssassssassssssssssssssessssns 72
2.8.5 MANAGING MRS....iiirerr ettt et et s et ettt et bt bttt 73
2.8.5.T MANAGING MRSttt sttt sttt s sttt s s st e s se st et sseasssetassenansnas 73
2.8.5.2 Resolving Code CONFLICES IN @N MRttt sttt sss s sn st sssssssessssanen 79
2.8.5.3 Detailed Description of Review COMMENTS GAtO.......cooeuririreereeriirieeieeeisireise ettt ssessesseas s ssssses 86
2.8.5.4 Detailed Description Of PIPELING GAte........ouevririiiieeeieeieieeicisistes sttt sssssssssssss s bbbt ssssasssssanes 87
2.8.5.5 Detailed Description of E2E Ticket Number AsSOCiation Gate.......c.covrvrerirenenenessisiseiesssesessessssssssnens 88
2.8.5.6 Detailed Description Of REVIEW GAte.........cooiuviurieriuririeeieireireiseiseiseie sttt essesseas st sses s e s ssesns 90
2.8.5.7 Detailed Description Of APProval Gate.........cieeiririreirisiesissesee s sss st sssssssssssssssssssssasssssnes 91
2.8.6 Viewing Review Records Of @ REPOSITOIY.......ocvuririeririerinisieississireisss st sesssssssssssssssssss s ssssssssssssssssssssnsns 92
2.8.7 Viewing ASSOCIAted WOIK [EEIMIS.......o.iueeieeecieiereire ettt sttt cs st eee 93
2.8.7.1 INEFOAUCEION ...ttt s ee st 93
2.8.7.2 COMMUE ASSOCIATION...cevuveiicireieicieie ettt sts b s st st es s ettt ees st bbb seseesenns 97
2.8.8 VIeWiING REPOSITONY SEATISTICS. ... oviurieericericiriciricirtietr ettt sttt sttt et ses 101
2.8.9 VIEWING ACHIVITIES. ...ttt sttt e bbbt s e bbb e b s et s e s s en s senassensssnsnsnas 102
2.8.10 Managing RePOSItOry MEMDELS..........coovruriririireinirisesisississessessssssssssss s ssnsnns 103
2.8.10.1 IAM Users, Project Members, and Repository MemDbers...........ovveeveneinrneireneeeeieeee s 103
2.8.10.2 Configuring Member Man@gemMENti.........ccoiieeeeieeieirisssssiesissiessssessssssssssssssesssssessssssssssssssssssssssssssssesssssnsans 104
2.8.10.3 RepOSIitOry MembDEr PEIMMISSIONS........ccoirireeririsieieiseissessesssssssissas 107
2.9 ConfiguING COARAITS REPO....c. ettt ettt es sttt st s et ess st sseseesneans 116
2.9.7 GENEIAL SELLINGS.everirieicteeieee ettt bbbt s s s bbb s s se s s b s bbbt s s s s s e s s bbb s b s senssssesansans 116
2.9.1.71 RePOSItOrY INFOIMATION....c.oiuieeceeieirieieieie ettt s sttt ss s ssssas st ensenses 117
2.9.71.2 NOTH ICATIONS. ...ttt et s s et es ettt b e eanenssassantrs 117
2.9.2 REPOSITOrY MaNQQEMIENT.....cceeierieieieieieeeteeesieisesie sttt sttt e st s s ss b ss s sessssssasssssssessssesassensssenssssassansen 119
2.9.2.T REPOSITONIES....cueeeeiieeieieieiei ittt bttt eas st s et s s s st a st ea s as et ae et ae st a bt ae bt a bt a et sebassseasssenssseassesaees 119
2.9.2.2 SPACE FIEEING...ccueiieeicieieirieirtet ettt ettt et sttt st sttt sttt et se bttt bbbt 121
2.9.2.3 SYNCNIONIZATION. ...ttt sttt ss bbb bbbt s st s s s s s s bt s s s s s s b s sssb s s ns s sessnssnsans 122
2.9.2.4 SUDIMOAULES......oueeeettree ettt s b bbbt 123
2.9.2.5 REPOSITONY BACKUP.....cuuieieieieeieieieirei sttt st es et sttt se s s eeseensesneans 126
2.9.2.6 RePOSItOry SYNCNIONIZATION.......ccucieeeeeierieieisses ettt es s s bbbt s st sssas bbbt ensessessssansansans 127
2.9.3 POLICY SEULINGS....cvrvierierierieririsiriseissis st sssssss st sass s s s s s st sssssssssssas s s st st essasssassssssssssnsnsnsensesansssssnsnnsnns 128
2.9.3.7 ProteCLEA BranCREs. ...ttt sttt ettt st teene 128
2.9.3.2 PrOtECLEA TGS ..iiiririeiririterieieetie s sss st ssas s sss bbb s s s s ss bbbt se s s s b s bbb s s s s s s esse b s b s enbensessessesansans 130
2.9.3.3 COMMIUL RULES.....eeiirerere ettt st bbbttt 130
2.9.3.4 MEIQE REQUESES.....coeieicirectretrecrt ittt sttt sttt sttt bbbttt st sttt b et b bbb 134
2.9.3.5 REVIEW COMIMENTS.....cuiuiriricieiretseineeetietsete et sebsessesetae et se bbbt sebae et bbbt ettt b ebstseeseese s baetns 138

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. iii

Repo

User Guide Contents
2.9.3.6 MR EVALUGTION. ..ottt s s bbbt 139
2.9.4 SEIVICE INTEGIATION. ..ttt ettt sttt s e s et st s b e e st e st se s s s sesesssssnssssssessssesassesansenans 140
2.9.4.T E2E SEELINGS.c.vuieiieirieirieirieirtcr ettt st et sttt et bbbt bbbt ettt 140
2.9.4.2 WEDRNOOKS. ...ttt ettt s bbb ettt 144
2.9.5 TEMPLate ManNAGEMENT ...ttt ettt bbbt sttt se s sresas 145
2.9.5.T MR TEIMPLALES. ...ttt sttt s s st s s s bbbt sases s s s s s st en s s sensensnsanen 145
2.9.5.2 ReVieW COMMENT TEMPLALES......coiviiereeceeceeieieieiststse e s s as s bbb s s s sas s s bbb s sessesanen 146
2.9.6 SECUNILY MaANAGEIMENT. ..ottt bbb sttt st st st s bbb bbb et b esastseastseaes 147
2.9.6.71 DEPLOY KEYS...ouiiieririririeeiiniesisse st ssssss st st st ss s s s s ssssss s s b st sssessessssssbs s s s s s s st snsessssssssssasssssensensnssesssssnsans 147
2.9.6.2 IP AAAreSss WHITELISTS......c.evureueeeirieireir ettt sttt eas s bbb st es s sensennsans 148
2.9.6.3 RiISKY OPEIALIONS......cveieeieeieriieieieissisisstssesses st ssss st ssensssssssssnsssssssanes 150
2.9.6.4 WALEITNIAIKS.....cvevieieeieeiecieies st tee s bbbt s st a s s bbbt a bbb s b s s s b e bbb s s s s s s sa e b s b s st s sssessesassansansantans 150
2.9.6.5 REPOSITONY LOCKING....uiuuiirierierieririsieieitiseiseses sttt st sss s sss bbb s st s s s s s s s ssss st snssnsesssansssnsns 151
2.9.6.6 AUGIL LOGS.....iueierieeiririsisiseissieseesis st es st sses s sss s s b sttt sssssssssss s bt esses s ssessebssbassen b st sssessessesssssnssssensensassessnsansans 152
2.10 Submitting Code t0 the COAEAITS REPO.......ccieiieirieeeieesieee ettt s s s ssss s s bbb s ansnes 153
2.10.7 Creating @ COMIMUL... . ettt st eas s st s st s st s et e b s et seassseasteessssessssesessssssassssassssansn 153
2.10.2 Transmitting and Storing a File in ENCryption MOGe.........c.cociurereneinrinceneinsiecesisseeceseisseessssssssssesssssssaseens 155
2.10.3 VIeWING COMMUE HISTOMY ...ttt ettt st et st st et sttt eas 166
2.10.4 Pushing Code to CodeArts RePO USING ECLIPSE......ccoiuieeieeieririeieieeiesie et sssssssesesseesssssssss s ssssssssssansans 166
2.T71 IMOTE ADOUL Gllucouceriieeeiiencicieeeciceseeecset ettt et ettt st s et 178
2.717.T USING the Gt CLENT...uveiriiec ettt sttt sss bbb ss s s bbbttt ssssssssss s s st snssnsessnsans 179
2.11.2 Setting Password-Free ACCESS Via HTTPS........ ettt tses s s sssssssssenssans 182
2.11.3 USING the TOrtOiSEGIt CLIENT.......cveieeeriririeiciresie ettt ss s s st sssssssssssssnssssnsensssssssns
2.17.4 Use CaSeSs ON the Git CLIENT. ...ttt bbbt s s b b s s sassansas
2.11.4.1 Uploading and Downloading Code

2.11.4.2 Committing Letter Case Changes in File Names to the Server....... s 190
2.11.4.3 Setting the Line ENAING CONVEISION.....ccciviuiirririeriereeie ettt st tsesses s sssssssss st s sssesssassasssssenes 190
2.11.4.4 COMMILEING HIAAEN FIlES....oiiieieeieireieeeies sttt sss st sssss bbbt s ssssssessssansans 190
2.11.4.5 Pushing a File That Has Been Changed 0N the SEIVer......... et 191
2.71.5 COMMON GIt COMMANTS...ouiiuiririiriireireenceiretreesetisesse et sese s tese s ss st s ss st bbbt ettt sasesnees 191
2.T71.6 USING GIE LFS. ettt ettt ee et e e bbb st bbb 197
27717 GIE WOIKILOWS ...ttt ettt et 199
2.T71.7.71 OVEIVIEW..cetireienieeeieie sttt saset et et e et bbb e bbbttt 199
2.711.7.2 CeNLraliZe€d WOTKFLOW.......cuveceeieeieririeeteiee ettt sttt ss bbbt bas bbb s sas s s s senaans 200
2.11.7.3 Branch Development WOIKILOW. ...ttt ssssssss st sssssssssssasssnsnns 201
217174 GIEFLOW. oottt s bbb bbbttt e i 201
2.171.7.5 FOIrKING WOTKFLOW.....coiviericciccctetete ettt sttt st bbb s s snes 203
0 1 Y= 5 T o R 206
3.1 OVEIVIEW....ccuiricieieieeeeeiaeeneeseseasesseasessese s e sessesssssase s st s st ts s e s st st es s e sa e b s st s esas e sastesseseesesenas 206
3.2 Git Installation and CONFIGUIAtION ...ttt ss bbb bbb sas s s 210
3.2.71 OVEIVIEW..eruiriiciiecieeiaeeseie et seae ettt st ettt sttt s sa s ssesassns 210
3.2.2 Installing Git Bash fOr WINAOWS..........ccerrieiririnsississisesisiss st sssassans 210

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. iv

Repo

User Guide Contents
3.2.3 Installing TOrtoiSEGIt fOr WINAOWS..........ovriririririeinsiscis sttt ssssss st st sssssssssssssssssssssssssssssssssssssssnns 211
3.2.4 INSLALlING GIT FOI LINUX.uruiurieeieeieieirtireisiieeeie sttt es sttt st css s es bbb eb e e sassenen 213
3.2.5 INStAlling Git FOr MACOS ...ttt ss bbb a st bbb ss s sssssssansansans 213
3.3 SSH Keys and HTTPS PASSWOIGS.........ccouruririririeireessessenessanes 214
33T OVRIVIBW..etieeeeretreeet ettt ettt s s sttt st s et st st st bbbt b et b et et et et st tseaes 214
3.3.2 SSH K@Y Sttt ees et st tase e esse bbb e R AR et te ettt 214
3.3.3 HTTPS PaSSWOITS......ceueeienenieeeeenecssetreasetssetsesessses s sssesse e ssse s e sttt bbb st 217
3.4 ClOUd REPOSILONY CrEATION.....ceuieceecertereeeiee ettt etseaseas sttt esses st et b sttt s s bbb st st eens 218
34T OVEIVIEW..c.uumiriireicineieeieiae ettt ista sttt sttt bbbt bbbt bbbt b et bt eae s baetns 218
3.4.2 Creating a@n EMPLY REPOSITOIY ...ttt st es s ea b esesssssassesnssssasaen 219
3.4.3 Creating @ Repository USING @ TeMPLAte.......ooirureiririereireieirereiete et ceseisess sttt ssssssses 221
3.4.4 Importing an EXEEINAl REPOSILONY......veieirieirieieeiseieeesesises st ssessss s s sttt essssssssssssssssessssssssssssssssansansans 224
3.4.5 FOIKING @ REPOSIEONY ...ttt tsetsssssss sttt s st sss s sss st s st sassssssss s st sn s s ssssssssssssasssnssssnsnes 226
3.5 Cloud Repository Clone/Download to @ LOCal COMPULET.......c.cueeiueerirerieeeieceieeetsesseess et ssssssssassenens 228
3507 OVEIVIEW..c.einiiireiireeee ettt et s bbbt bbbt bbb baebas 229
3.5.2 Using SSH to Clone a Cloud Repository to @ LOCal COMPULET........cccoureeeirrerrerrerieneninieiesssisessessessessasssnenns 229
3.5.3 Using HTTPS to Clone a Cloud Repository to @ Local COMPULET........ceureeereeriereeneinereeieise e eeeeeeeasenes 233
3.5.4 Downloading a Code PAackage ON @ BIrOWSEcririeiriinsineinseneesssassansens 236
3.6 REPOSITONY MIGEatioN.....cueeuierieieieieieiricisee ettt sttt sttt s s sbs et eensseeasbesassesassnen 237
30.T OVEIVIEW....eeieerieeretreeci ettt ettt st st b ettt st st st st st bbb bbb b et e et st tseaes 237
3.6.2 Migrating an SVN Repository t0 COAEHUD.........o.ririirec ettt sae s s snaens 237
3.6.3 Importing a Remote Git Repository t0 COAEHUD........o i 241
3.6.4 Uploading Local Code to COABHUDL........oreeeire ettt saes 243
3.7 CLOUA REPOSILOIIES......eieivrierirrieeeiieiieiasisses s tssss s sssssssss st s ssssssssssssssssssss s st s s s s ssesssbasssss s bt ensesssssessssasssssensnsessessesssssnsas 244
371 REPOSITONY LISttt ettt st st sttt ettt st seas 244
3.7.2 VieWing RePOSITOrY DELAILS.......coviurierierieieireieireisete ettt sttt es et s e 245
3.7.3 Managing Repository FileS iN CONSOLE.. ...ttt sesss st sss s s bbb ssssesansas 246
374 VIEWING ACHIVITIES. c.ceeeirieeieeie ettt et ettt et st et et et ee st eas 251
3.7.5 Viewing Review Records Of @ REPOSITOIY......cooouuriiriuririeieieireireiseises ettt et ses s saseaseassaas 252
3.7.6 VIieWiNg REPOSITONY STATISTICS....ooiuriierieiririeirieisietei ettt ess st ssssssss s st sssssssssssssssssssnssssnssssnssncs 253
3.7.7 Viewing the Commit Graph 0f @ REPOSILOIY ..ottt ssss st ssssssssssssnsnns 253
3.8 ASSOCIating ClOUA REPOSITOIIES......c.cuiurieririeirei ittt bbbttt s st ssesnean 254
3.9 Cloud RepOoSIitOry ManAgEMENT........cueieiririririeiesiesesseess st sessssessessssssssssssssssansassans 255
3.9.7 GENEIAL SELLINGS. ...ceieririeeeireiree ettt sttt ss st st s s s ss bbb s et ee s s sss s s s s st st ensnssessnsansnns 256
3.9.1.71 RePOSItOrY INTOIMATION....c.oiuieceeeeeeeeet ettt ettt sttt sen 256
3.0.T.2 MEIGE REQUESTES.....cceeteeet ettt ettt bttt ettt bbbttt b et et se et bes 256
3.9.T.3 COMMIUL RULES.....eeett ettt b sttt 259
3.9.1.4 INOTITICATIONS. ...ttt e es st b e e s e s s bantas 260
3.9.1.5 REPOSITOIY LOCKING ..ottt sttt bbbt sa bbb s sss s s s sss s s bt et essessnssnsas 261
3.9.1.6 RepOSItOry SYNCNIONIZATION.......cvecveeeeeirieieieicisei sttt ses st st ss st sssssss st es s sssnsssssssesansansans 261
3.9.2 REPOSITOrY MaNAGEMIENT. ...ttt sttt sttt saees 262
3.9.2.1 DEFAULE BranCh.... ettt et et b bbbt e e 262

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. v

Repo

User Guide Contents
3.9.2.2 ProteCted BranCRhEs........ceeieieeecireireeeire ettt et s bt 262
3.9.2.3 SUDIMOAULES......o ettt bbbttt taen 263
3.9.2. WEDNOOK. ...ttt ettt ettt 265
3.9.2.5 SPACE FrEOING ..ottt sttt ettt sttt bttt st st st ettt seeas 267
319,26 BACKUP. ..ttt skttt 268
3.9.2.7 COPY REPOSITONY SEIEINGS.cvieeirieirirecteeeteesieeeiseie ettt ettt sttt et sssen st s s sensnens 268
3.9.3 SECUNILY MaANAGEIMENT. ..ottt s st b sttt st s st st st ae b s s s easseeasbetassseastseans 269
3.9.3.71 DEPLOY KEYS....o ettt easeaseas sttt st sttt b s s s eantas 269
3.9.3.2 Configuring IP Address WHItELIST..........c.ccuriririiiiiesieieiieiei sttt ssss s sss bbb sassansanses 271
3.9.3.3 RISKY OPEIALIONS......eeeieeieeeerieeieirissicirsisees st ssss st sssasssassssssnsesssssnssssssssssanen 272
3.9.3.4 OPEIAtiONAl LOGS....iuieuierieierieeieieireireis ettt ese sttt et s ts et bbbt eseta s st 272
3.0.3.5 WALEIIMAIKS. ... cee ettt te b te sk bbbttt 272
3.10 Committing Code t0 the CLOUM........ouririericieeeeeeee ettt sttt ss s snes 273
3.10.7 Creating @ COMMUT... ettt ettt st et sttt ettt bttt 273
3.10.2 Transmitting and Storing a File in ENCryption MOdE...........ocoerieieeieinnirsineiesiesesessssssssssssssee e ssssssssssansens 275
3.10.3 VIeWING COMMUE HISTOIY ...ttt ettt st et et st et sttt ene 286
3.10.4 Pushing Code to CodeHUD USING ECLIPSE.......ovviuriuririeieireireireiseiseieee e ieisetsessesseases st sasens 287
3.11 Team-based Development 0N COAEHUD........oeceecee ettt 297
3.11.T MANQAQING BranCRES......ceeeeiciec ettt sttt bbbt s st et sssensssassssssnsansans 298
3.171.2 MANAGING TAGS. . iutiriueiriieiriieirtieirtieistieete st ee st b sttt et et ettt bbbt ettt bttt eas 311
3.11.3 Merge ReQUEST APPIOVAL...........oouieieeieieiriciceeteetetesesss sttt s bbbt s s sss s bbb sss st sassansnsenen 317
3.17.4 ASSOCIAING WOTK [EEIMIS...c.oeieirecerre ettt st s sss st st sssssssssssssnsenses 321
3.11.5 Resolving Code ComMMIT CONTLCES ..ottt b sttt es s saseas 327
3.12 Member and Permission ManagemMENti........cccueueeieeririeisississie s ssssssssssssesssssesssssssssssssssssssssssssssssassansans 335
3.12.1 1AM Users, Project Members, and RepOSItOry MEMDEFS...........ovriririerreineeeresessie s sssssens 335
3.12.2 Managing RepPOSItOry MEMDETS.........covuririreireirieesesieiseiseie sttt ss st b st ess s ssessnsees 335
3.12.3 REPOSItOry MEmDEI PEIMISSIONS......c.iviiieeierieceeieeiessis sttt sasssssssss st assssssssssssssassssssssessssssssessssassansassessenes 338
313 IMOTE ADOUL Glluceuieiirinieiicieiieieee ittt et bbb s s et 343
3.13.T USING the Gt CLENT. .. ettt st st s et sb et sennesntns 343
3.13.2 Setting Password-Free ACCESS VIa HTTPS........rereceeeisisiss st sss st ssssssssssssssssssssssssessssssans 346
3.13.3 USING the TOrtOISEGIt CLIENT......ceveeeeeieriririsieireeee sttt sttt s st ss s s s sssssssssnsnsnens 348
3.13.3.T GENEIAtiNG @ PPK File.....u ettt sttt 348
3.13.3.2 Creating @ Git REPOSITONY ...ttt ettt sttt sess s sesessssssssssssssessssssasssssssesssssssssasans 351
3.13.3.3 ClONING @ REPOSITOIY....vuiireiereerierierisisisissessesssssssssssss s ssssssssssssasssassssssssssessssssssns 352
3.13.3.4 PUSIING @ REPOSITONY ...ttt sttt sttt saesas 352
3.13.4 Use CaseS ON the Gt CLENT.....ccoiirieeeceeie ittt ettt bbb st s et basnees 353
3.13.4.1 Uploading and DowWNLoading COE..........urriririrrirrineirsneneesesssissnes 353
3.13.4.2 Committing Letter Case Changes in File Names to the Server........ e 354
3.13.4.3 Setting the Line ENAING CONVEISION........ccoiiieeeeieeieneeisisiesiesississsssessss st sessssssssssssssssssssssssssssssssssessssasssnsanes 355
3.13.4.4 COMMILEING HIAAEN FIlES....ou ettt s s ss s sss st s s ss s ssnsas 355
3.13.4.5 Pushing a File That Has Been Changed on the Server.......... e 355
3.13.5 COMMON GIt COMMIANAS.....cviemieriereieiereire ettt essee e sssee s ssse st bbb bs bt bs b st esaneses 356

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. Vi

Repo

User Guide Contents
31306 USING Gt LFS...oeeeiee ettt sttt sss st ss s s st s st st sssssessssassnsnsees 361
3137 GIE WOTKILOWS..... ettt bbbt s s s st s s st se st b s s s s s sa st essssesansenanes 363
BL13.7.1T OVEIVIEW..ceeeeeieireeieeeiree ettt sttt et st s st s st s e se s e se e st ea s st sebsnsebas et s sesassensssenas 363
3.13.7.2 CeNLraliZed WOTKFLOW......vuieeieeiririeieircencs sttt sttt ssssss st ssss s s sss s sn st snssnsnsanes 363
3.13.7.3 Feature BranCh WOTKFLOW.........cc ettt bbbt e snes 364
31374 GIEFLOW ...ttt sttt bbbt bbb e s bbb s et s s bbbt ssesanbanen 365
3.13.7.5 FOIKING WOTKFLOW.cuiriecirierisieisss ettt sss sttt st s sss s st st ss s s s sas s st enssnsssssssnsas 367

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. vii

Repo
User Guide 1 Before You Start

Before You Start

Huawei Cloud CodeArts Repo started a grayscale release from May 6, 2023.
During the release, all user data is not affected. Grayscale users can perform
repository operations by referring to the new user guide, and non-grayscale users
can perform repository operations by referring to the old user guide.

How Do | Know Whether I'm a Grayscale User?

When a grayscale user accesses the CodeArts Repo repository details page, the
Code tab page is displayed, indicating that you have entered the grayscale
environment.

- repo & Create Build Task

™ Repository ID: 2111728230

[E Home 13 Merge Requests 0 (& Reviews [3 Associated Work Items 71 Repository Statistics = Activities 2 Members

[%10.34 MB Files 2 commits E¥ 1Branches © 0Tags T} Comparison
master

repo + Create v

repo (2 History

images
images
sic
src
gitignore

README md gitignore

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

Repo
User Guide 2 New Version (Recommended)

New Version (Recommended)

Overview

Git Installation and Configuration

Setting SSH Key or HTTPS Password for CodeArts Repo Repository
Migrating Data to CodeArts Repo

Creating a CodeArts Repo Repository

Associating the CodeArts Repo Repository

Cloning or Downloading Code from CodeArts Repo to a Local PC
Using CodeArts Repo

Configuring CodeArts Repo

Submitting Code to the CodeArts Repo

More About Git

2.1 Overview

CodeArts Repo is a distributed version management platform that uses the Git
workflow. It provides functions such as security management, member and
permission management, branch protection and merge, online editing, and
statistical analysis. The service aims to address issues such as cross-distance
collaboration, multi-branch concurrent development, code version management,
and security.

To start a new project, you can use CodeArts Repo built-in repository templates to
create a repository for development. For details, see Starting R&D Projects in
CodeArts Repo.

If you are developing a project locally and want to use CodeArts Repo to manage
versions, you can migrate the project to CodeArts Repo. For details, see Migrating
a Local Project to CodeArts Repo.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 2

Repo
User Guide 2 New Version (Recommended)

Starting R&D Projects in CodeArts Repo

You can use repository templates provided by CodeArts Repo to create a project
and start development. The following figure shows the workflow.

Prepare Routine Review merge
environment development request

Subscribe to this
service

Repository
administrator

Create repository using
template

Use tags to manage
versions

Merge code

Configure repository View commit records Review merge request

Commit code to cloud
repository

Configure Git
environment

Create merge request

Configure SSH key/
HTTPS password

Create dev branch

3

Developer

Clone or download
repository to local PC

The operations involved are as follows:

e Creating a Repository Using a Template

e Configuring Member Management

e Configuring CodeArts Repo

e Git Installation and Configuration

e Cloning or Downloading Code from CodeArts Repo to a Local PC
e Managing Branches

e Managing Tags

e Submitting Code to the CodeArts Repo

e Managing MRs

e Forking a Repository

Migrating a Local Project to CodeArts Repo

To manage code versions of a locally developed project using CodeArts Repo, you
can bind the local repository to CodeArts Repo and complete initial push. Then,
you can continue developing your project in the distributed version management
mode. The following figure shows the workflow.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 3

Repo
User Guide

2 New Version (Recommended)

Routine
development

Prepare
environment

Subscribe to this
service

Create empty
repository

Use tags to manage
versions

Repository

administrator

Configure repository View commit records

Commit code to cloud
repository

Initialize local
repository using Git

Configure SSH/HTTPS
password

Create dev branch

&

Developer

Bind to cloud
repository

Complete initial push

The operations involved are as follows:

e Creating an Empty Repository
e Configuring Member Management
e Configuring CodeArts Repo

e Git Installation and Configuration

Review merge
request

Merge code

Review merge request

Create merge request

e Associating the CodeArts Repo Repository

e Cloning or Downloading Code from CodeArts Repo to a Local PC
e Managing Branches

e Managing Tags

e Submitting Code to the CodeArts Repo

e Managing MRs

e Forking a Repository

Distributed Version Management

There is a complete code repository on your local computer and in CodeArts Repo

respectively.

All version information can be synchronized to the local computer for viewing.

You can commit code offline on the local computer and push the code to the
CodeArts Repo repository when the network is connected.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

Repo
User Guide

2 New Version (Recommended)

CodeArts Repo

Version Database

Basic Workflow

Version 3
Computer A Computer B
e, Version 2 N,
File —— File
/l I : !)
\-J L]/ \T >

Version 3 Version 3

Version 2 Version 2

Version 1 Version 1

CodeArts Repo is a cloud repository service that uses the Git workflow.

Data in a Git local repository can be in one of the three statuses: modified,
staged, and committed. The file you modified in the repository is in the
modified state. You can run the add command to add the changes to the
local staging area. Then, the file is in the staged state. Run the commit
command to commit the changes to the local repository for management.
The corresponding version and version number are generated upon each
commit. You can switch and roll back a version based on the version number.
A version can have multiple branches and tags. Each branch, tag, or commit is
an independent version that can be checked out using the checkout
command.

As a cloud repository service, CodeArts Repo not only has the basic features of
local Git repositories, but also serves as the remote repository of each local
repository and provides configurable security policies and authentication.

A CodeArts Repo cloud repository interacts with a Git repository in the
following scenarios:

- clone: clones the branch in CodeArts Repo to the local computer as a
local repository.

- push: pushes changes in the local repository to CodeArts Repo.
- fetch: fetches a version from CodeArts Repo to the working directory.

- pull: fetches a version from CodeArts Repo to the working directory and
tries to merge it into the current branch. If the operation fails, you need
to manually resolve the file conflict.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 5

Repo
User Guide 2 New Version (Recommended)

pull

-

fetch/clone

checkout

add

commit

push

B L R T EE T S

2.2 Git Installation and Configuration

2.2.1 Installing and Configuring Git

CodeArts Repo is a Git-based service. Git clients such as Git Bash or TortoiseGit
must be installed on local computers to connect to CodeArts Repo. The following
sections describe how to install and configure Git Bash and TortoiseGit on
Windows, Linux, and macOS.

If you have installed Git and configured the signature and email address, skip the
following sections:

e Installing Git Bash for Windows

e Installing TortoiseGit for Windows

e Installing Git for Linux

e Installing Git for macOS

(1 NOTE

GitHub Desktop is not supported in CodeArts Repo.

2.2.2 Installing Git Bash for Windows

Git Bash is a simple and efficient client on Windows for users who are familiar
with Git commands. If you are unfamiliar with Git commands, you can use
TortoiseGit by referring to Installing TortoiseGit for Windows.

1. Install the Git Bash client.
a. Go to the Git Bash website and download the installation package for
32-bit or 64-bit Windows.

b. Double-click the installation package. In the installation window
displayed, click Next for several times and then click Install.

2. Open the Git Bash client.

Click the Windows start icon, enter Git Bash in the search box, and press
Enter to open Git Bash. You are advised to pin Git Bash to the Windows
taskbar.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 6

https://git-scm.com/download/win

Repo
User Guide 2 New Version (Recommended)

3. Configure the Git Bash client.

Enter the following commands in Git Bash to configure your username and
email address:

git config --global user.name your_username

git config --global user.email your email address

Run the following command to view the configurations:

git config -l

(10 NOTE

e A username can contain letters, digits, and special characters. You are advised to
set the same username as that in CodeArts Repo.

e The email address should be written in the standard format.

e The --global parameter in the commands indicates that the configurations apply
to all Git repositories on your computer. However, you can set a different username
and email address for a specific repository.

2.2.3 Installing TortoiseGit for Windows

TortoiseGit is a better choice if you are not familiar with Git commands or you
hope to migrate code from an SVN client such as TortoiseSVN. TortoiseGit is a
Windows shell interface to Git as TortoiseSVN to SVN.

Prerequisites

1. Go to the TortoiseGit website and download the installation package for 32-
bit or 64-bit Windows.

2. Double-click the installation package. In the window displayed, click Next for
several times and then click Install to complete the installation. Click Finish
to run the tool.

3. In the first start wizard displayed, select a language, enter a Git.exe path (the
field is automatically filled with an available path if there is any), and
configure a username and email address. Keep the default values and click
Next till the settings are finished.

(Optional) Localization

TortoiseGit is installed in English by default. If you want to use a translated version
of TortoiseGit, go to the TortoiseGit website to download your desired language
pack.

Configurations

TortoiseGit also requires a key pair for authentication with the CodeArts Repo
server. To generate a key pair, perform the following steps:

1. Search for PuTTYgen and open it. In the displayed window, click Generate to
generate a key pair.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 7

https://tortoisegit.org/download/
https://tortoisegit.org/download/

Repo
User Guide 2 New Version (Recommended)

@ PUTTY Key Generator ? X
Eile Key Conversions Help

Key
Please generate some randomness by moving the mouse over the blank area.

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key

Parameters

Type of key to generate:
RSA DSA ECDSA EdDSA SSH-1{RSA)

Mumber of bits in a generated key: 204

(1 NOTE

PuTTYgen is a powerful, compact, and easy-to-use tool for generating pairs of public
and private keys. It is installed along with the TortoiseGit installation and does not
conflict with the one built in PuTTY.

2. After the key pair is generated, store the public and private keys.

- Click Save private key. In the dialog box that is displayed, enter a file
name and save the private key file.

- Click Save public key. In the dialog box that is displayed, enter a file
name and save the public key file.

3. Copy the public key in the red box in the following figure and bind it to
CodeArts Repo.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 8

Repo
User Guide 2 New Version (Recommended)

File Key Conversions Help

Key fingemprint :

Key comment: |rsa+:eg,--2D23D41 5 |

Key passphrase: | |

Corfirm passphrase: | |

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of key to generate:
i® RSA (IDSA (JECDSA () Ed25515 () 55H-1 {RSA)

Mumber of bits in a generated key:

4. Bind the private key to the local client.

Search for Pageant and open it. In the displayed window, click Add Key, and
select the generated private key file.

2.2.4 Installing Git for Linux

e Debian or Ubuntu

Run the following command in the terminal:
apt-get install git

e Fedora, CentOS, or Red Hat

Run the following command in the terminal:
yum install git

e For more OSs, see the Git Git website.

2.2.5 Installing Git for macOS

e You can quickly install Git on macOS by installing Xcode command line tools.

e On Mavericks 10.9 or a later version, run the git command on the Terminal.
The system will prompt you to install the command line tools if you have not.

e If you want to install Git of a later version, go to the Git website and
download the latest version for macOS.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 9

Repo
User Guide 2 New Version (Recommended)

2.3 Setting SSH Key or HTTPS Password for CodeArts
Repo Repository

2.3.1 Overview

Introduction

When you push code to or pull code from CodeArts Repo repository, the repository
needs to verify your identity and permissions. SSH and HTTPS are two
authentication modes for remote access to CodeArts Repo.

e SSH Keys: An SSH key is used to establish a secure connection between your
local computer and CodeArts Repo under your account.

Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.

After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

e HTTPS Password: An HTTPS password is a user credential used for pulling
and pushing code using the HTTPS protocol.

The maximum size of a package that can be pushed at a time using HTTPS is
200 MB. If the size is greater than 200 MB, use the SSH mode.

Federated users cannot be bound to email addresses and cannot use the
HTTPS protocol.

(1 NOTE

Either SSH or HTTPS can be used to push or pull code. Set SSH keys or HTTPS passwords as
required.

2.3.2 SSH Keys

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. SSH is an authentication mode for remote
access to CodeArts Repo.

e An SSH key is an encrypted network transmission protocol that establishes a
secure connection between your computer and CodeArts Repo under your
account.

e After you configure an SSH key on a local computer and add the public key to
CodeArts Repo, you can use the SSH key to access all code repositories under
your account from your computer.

e Before connecting to CodeArts Repo in SSH mode, generate an SSH key on
your computer and configure it in CodeArts Repo.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0001.html

Repo
User Guide 2 New Version (Recommended)

Generating and Configuring an SSH Key
The following procedure describes how to generate a public key and bind it.
Step 1 Install the Git Bash client by referring to Installing Git Bash for Windows.
Step 2 Check whether your computer has generated a key.

Run the following command on the local Git client:

cat ~/.ssh/id_rsa.pub

e If No such file or directory is displayed, no SSH key has been generated on
the computer. Go to Step 3 to generate and configure an SSH key.

e If at least one group of keys is returned, an SSH key has been generated on
your computer. To use the generated key, go to Step 4 directly. To generate a
new key, go to Step 3.

e If you want to manage multiple keys on one computer, see How Can | Set
Multiple SSH Keys on My Computer?

Step 3 Generate an SSH private key.

Run the following command on the local Git client to generate a new SSH key:
ssh-keygen -t rsa -C "Your SSH key comment"

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/codehub_faq/codehub_faq_0002.html
https://support.huaweicloud.com/intl/en-us/codehub_faq/codehub_faq_0002.html

Repo
User Guide 2 New Version (Recommended)

Perform the following operations. If information similar to the preceding figure is
displayed, the key is generated.

1. The system prompts you to enter the storage path of the key. You can press
Enter to use the default path.

2. If a key already exists in the local path, the system asks you whether to
overwrite it. Enter n to cancel key generation, or enter y and press Enter to
overwrite the existing key. In this example, the existing key is overwritten.

3. The system prompts you to set a password for the key and confirm the
password. If you do not want to set a password, press Enter.

NOTICE

e If a password is set (recommended), the generated private key file is stored
after being encrypted by AES-128-CBC.

e |f you press Enter without entering the password, the generated private key file
id_rsa is stored locally in plaintext. Keep it secure.

Step 4 Copy the SSH public key to the clipboard.

Run the following command based on your operating system to copy the SSH
public key to your clipboard. Take Windows as an example. If no command output
is displayed, the public key is copied.

¢ Windows
clip < ~/.ssh/id_rsa.pub

e macOS
pbcopy < ~/.ssh/id_rsa.pub

e Linux (xclip required)
xclip -sel clip < ~/.ssh/id_rsa.pub

Step 5 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > SSH Keys.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 12

Repo
User Guide 2 New Version (Recommended)

Lo o =@

FPreferences
Theme&Layout>

Fersona

IO ® 2

This Account
Settings

Liser Center Billing Center

Step 6 On the SSH Keys page, click Add SSH Key. The Add SSH Key page is displayed.

Add SSH Key

For details about how to generate an SSH key. see the guidance below.

Key Name

Key

You can add 5000 more characters

| have read and agree to the Privacy Statement and CodeArts Service Statement.

Step 7 Enter a key name, paste the SSH public key copied in Step 4 to the Key text box,
select | have read and agree to the Privacy Statement and CodeArts Service
Statement, and click OK. A message is displayed, indicating that the operation is
successful.

(11 NOTE

e An SSH key cannot be added repeatedly. If an SSH key fails to be added, check whether
it has already been added or whether there are redundant spaces in the key.

e After the key is added, you can view it on the SSH Keys page. If it is no longer used, you
can delete it.

e The difference between an SSH key and repository deploy key is that the former is
associated with a user/computer and the latter is associated with a repository. The SSH
key has the read and write permissions on the repository, and the deploy key has the
read-only permission on the repository.

--—-End

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 13

Repo
User Guide 2 New Version (Recommended)

Verifying Whether an SSH Key Is Bound

When an SSH key is bound, you can perform SSH-clone on the repository that you
have the access permission on the client. If the clone is successful, the key is
bound.

(1 NOTE

If you use SSH to clone a repository to the local computer for the first time, the message
"The authenticity of host *.*.com can't be established. RSA key... (yes/no)?" is displayed.
Enter yes to continue.

2.3.3 HTTPS Password

Introduction

When you push code to or pull code from CodeArts Repo, the repository needs to
verify your identity and permissions. HTTPS is an authentication mode for remote
access to CodeArts Repo.

e HTTPS username

The value can be the tenant name or IAM username. Enter the complete
username. If you want to add the username to the URL, escape '/' to ' %2F'.

(10 NOTE

When setting the HTTPS password for the account (the account name is the same as
the username), you can enter only the account name.

e HTTPS password

- Enter a password containing 8 to 32 characters. The password must
contain at least three types of digits, uppercase letters, lowercase letters,
and special characters. It cannot be the same as the username or the
username spelled backwards.

- An HTTPS password is a user credential used for pulling or pushing code
using the HTTPS protocol. Each developer needs to set a password only
once and can use it for all repositories.

- Keep your HTTPS password secure and change it periodically to avoid
security risks. If you forget the password, set a new HTTPS password.

(11 NOTE

By default, the HTTPS password is the Huawei Cloud login password. The password can be
synchronized in real time. You can also select Set new password to change the password.

Changing the HTTPS Password

You need to set the initial password upon the first login. You can also change the
HTTPS password at any time. The procedure is as follows:

Step 1 Log in to the CodeArts Repo service repository list page, click the alias in the
upper right corner, and choose This Account Settings > HTTPS Password. The
page is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 14

Repo
User Guide 2 New Version (Recommended)

Preferences -
Theme&Layolltl~

1D ® 2

This Account

User Center Billing Center -
Settings

Step 2 Choose Set new password to reset the password. (If you have set an HTTPS
password and are using it, click Change.)

HTTPS Password

Use Huawei Cloud login password) Set new password

Username
= Verification Send Email
Code
You have not bound an email address. Bind Email Address
MNe
Password
Confirm
Password
I have read and agree to the Privacy Statement and CodeArts Service Statement.

Step 3 Enter the new password and email verification code, select | have read and agree
to the Privacy Statement and CodeArts Service Statement, and click OK. A
message is displayed, indicating that the operation is successful.

Step 4 After the password is reset, you need to regenerate the repository credential
locally and check the IP address whitelist. Otherwise, you cannot interact with
the CodeArts Repo repository.

Delete the local credential (for example, on Windows, choose Control Panel >
User Accounts > Manage Windows Credentials > Generic Credentials), use
HTTPS to clone the cloud repository again, and enter the correct account and

password in the dialog box that is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 15

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

If SSL certificate problem is displayed, run the following command on Git client:
git config --global http.sslVerify false

--—-End

(11 NOTE

e You can click Use Huawei Cloud Account Password to reset the password and
customize a password at any time.

e If the account is upgraded to a Huawei ID, the tenant-level function of Use HUAWEI
CLOUD Account Password is no longer supported (the function is still valid for IAM
users).

e The maximum size of a package that can be pushed at a time using HTTPS is 200 MB. If
the size is greater than 200 MB, use the SSH mode.

e Federated users cannot be bound to email addresses and do not support the HTTPS
protocol.

Verifying Whether an HTTPS Password Takes Effect

After setting an HTTPS password, you can perform HTTPS-clone on the repository
that you have the access permission on the client. A dialog box is displayed, asking
you to enter the account and password. If the clone is successful, the password is
configured.

(11 NOTE

You can also use the HTTPS protocol to set password-free code submission. For details, see
Setting Password-Free Access via HTTPS

2.4 Migrating Data to CodeArts Repo

2.4.1 Overview

This section describes how to migrate your repository to CodeArts Repo. Select one
of the following migration solutions based on your repository storage mode:

e Migrating an SVN Repository to CodeArts Repo

e Importing a Remote Git Repository to CodeArts Repo

e Uploading Local Code to CodeArts Repo

2.4.2 Migrating an SVN Repository to CodeArts Repo

This section uses a code repository with the standard SVN layout as an example to
describe how to migrate an existing SVN repository to CodeArts Repo. The
following figure shows the directory structure of the repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0001.html

Repo
User Guide 2 New Version (Recommended)

|-- .svn
|-- KotlinGallery
[-- trunk Main Development Directory
|--app
|--gradle
|__
|-- branches Branch Development Directory
[--rl.1 hotfix
|--app
[--gradle
‘__
|-- tags Tag Archive Directory(The modification i5 not allowed)
[--1r1.0
|--app
[--gradle

[--rl.1

There are two methods of migrating the existing SVN code. Both methods
effectively migrate the SVN code and operation records. The differences of the two
methods are as follows. In the first method, the branches and tags folders of the
SVN repository are mapped to Git branches and tags during the migration. This
facilitates subsequent development on CodeArts Repo, but the migration process is
complex. The second method is simple because the branch and tag folders of the
SVN repository are migrated without mapping, but it is inconvenient for
subsequent development. You can select a method as required.

e Migration Method 1: Import on the Git Bash Client: applicable to the
scenarios where only part of code is stored in the SVN during project
development

e Migration Method 2: Online Import Using HTTP: applicable to the scenarios
where the complete project code is stored in the SVN when the project is
complete

Migration Method 1: Import on the Git Bash Client

Step 1 Obtain committer information of the SVN repository.

1. Use TortoiseSVN to download the repository to be migrated to the local
computer.

2. Go to the local SVN repository (KotlinGallery in this example) and run the

following command on the Git Bash client:
svn log --xml | grep "A<author" | sort -u | \awk -F '<author>' '{print $2}' | awk -F '</author>' '{print
$1} > userinfo.txt

The userinfo.txt file is generated in the directory.

> This PC » DataDisk (D) » workspace » SVN » DevOpsOnDevCloud » KotlinGallery

-

@ | branches
& tags

trunk
Ijﬁ] userinfo.tbxt

3. Open the userinfo.txt file. You can view the information about all committers
who have committed code to the repository in the file.

a3
m

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 17

Repo
User Guide 2 New Version (Recommended)

4. Git uses an email address to identify a committer. To better map the SVN
repository information to a Git repository, create a mapping between the SVN
and Git usernames.

Modify the userinfo.txt file. Each line should be in the format of
svn_committer = git_ committer_nickname <email_address>.

I:I userinfo. txtEd

1 admin = xiehao <xiehao @ . COm>
2 fanghua = fanghua <fanghua @ . COm>
g Xiayan = xiayan «<Xiayan @ . COm>

Step 2 Create a local Git repository.

1. Create an empty Git repository directory on the local computer, and copy
the userinfo.txt file obtained in Step 1 to the directory.

2. Start the Git Bash client in the directory and run the following command to

clone a Git repository:
git svn clone <svn_repository_address>--no-metadata --authors-file=userinfo.txt --trunk=trunk --
tags=tags --branches=branches

The following table lists parameters in the command. Set the parameters as

required.
Parameter Description
--no-metadata Prevents the Git from exporting useless information
contained in the SVN.
--authors-file File that maps all SVN accounts to Git accounts
--trunk Main development project
--branches Branch projects
--tags Tags

After the command is executed, a Git repository is generated locally.

» This pC » DataDisk (Iv) » workspace » Git » admin

Fas

% KotlinGallery

020
020

M2 2
‘ ‘

| userinfotut KB
3. Run the following commands to go to the KotlinGallery folder and verify the
current Git repository branch structure:
cd KotlinGallery
git branch -a
(Git/ admin
5 od KotTinGallery/

/G1t/admin
$/git branch -a

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 18

Repo
User Guide

2 New Version (Recommended)

As shown in the preceding figure, all SVN directory structures are successfully
migrated in the form of Git branches.

Step 3 Correct local branches.

In Step 2, the git svn clone command is used to save the tags folder in the SVN
repository as a branch, which does not comply with the Git usage specifications.
Therefore, before uploading tags to CodeArts Repo, adjust the local branches to

comply with the Git usage specifications.

1.

Go to the local Git repository and run the following commands on the Git

Bash client to change the tags branch to appropriate Git tags:
cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/

rm -Rf .git/refs/remotes/origin/tags

git branch -a

git tag

5 cp -Rf .git/refs/r

§ rm -Rf .git/refs/remo

$ git branch -a

zit/admin/KotTinGallery |
$ git tag
rl.0
ri.1

Run the following commands to change the remaining indexes under refs/

remotes to local branches:

cp -Rf .git/refs/remotes/origin/* .git/refs/heads/
rm -Rf .git/refs/remotes/origin

git branch -a

git tag

§ cp -Rf .git/re
£ rm -Rf .git/refs/
§ git branch -a

rl.1_hotfix
trunk

§ git tag

Run the following commands to merge the trunk branch into the master

branch and delete the trunk branch:
git merge trunk

git branch -d trunk

git branch -a

git tag

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 19

Repo
User Guide

2 New Version (Recommended)

Step 4

$§ git bran
Deleted branch tru ‘was bccfodg).

§ git branch -a

rl.1_hotfix

§ git tag
ri1.0
rl.1

Upload the local code.

1. Set the SSH key of the repository by referring to Overview.

2. Run the following commands to associate the local repository with the
CodeArts Repo repository and push the master branch to CodeArts Repo:
git remote add origin <CodeArts Repo_repository_address>
git push --set-upstream origin master
After the push is successful, log in to CodeArts Repo and view the master
branch of the repository after clicking the Code and Branches tabs.

3. Run the following command to push other branches from the local computer
to CodeArts Repo:
git push origin --all
After the push is successful, the r1.1_hotfix branch is added to the repository
after clicking the Code and Branches tabs.

4. Run the following command to push tags from the local computer to
CodeArts Repo:
git push origin --tags
After the push is successful, click the Code and Branches tabs and view tags
r1.0 and r1.1 added to CodeArts Repo.

--—-End

Migration Method 2: Online Import Using HTTP

Step 1

Step 2

Step 3

Ensure that your SVN server supports HTTP or HTTPS access. You can enter
http(s)://SVN server address/Name of the repository to be accessed in any
browser for verification.

On the CodeArts Repo list page, click - next to New Repository and choose
Import Repository from the drop-down list.

Enter the source repository URL, enter the SVN username and password, select |
have read and agree to the Privacy Statement and CodeArts Service
Statement, and click Next.

Enter the name of the repository to be created, configure permissions, and click
OK.

After the repository is created, click the repository name to view details.

--—-End

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 20

Repo
User Guide 2 New Version (Recommended)

2.4.3 Importing a Remote Git Repository to CodeArts Repo

Background
CodeArts Repo allows you to import Git-based remote repositories.

Git-based remote repositories are cloud repositories hosted in storage services
such as GitHub.

Method 1: Online Import

You can directly import your remote repository to CodeArts Repo online. The
import speed will be affected by network conditions of the source repository.

1. On the CodeArts Repo homepage, click - next to New Repository and
select Import Repository from the drop-down list. The Import Repository
page is displayed.

2. Enter information in the Source Repository URL field. If the source repository
is open-source (public repository), select Username and password not
required. If the source repository is private, select Username and password
required.

3. Click Next. On the Create Repository page, enter the basic information about
the repository.

4. Click OK to import the repository. The repository list page is displayed.
o Set Basic Information

Set Basic Information

Source Repository URL
Git -

— 30min timeout of SVN of repository importing. If timesout, using clone/push client is recommended
- Git LFS objects are not included in the imported content

— The repository domain must be connected to the service node.

© Usemame and password not required

Username and password required

For details, see Importing an External Repository.

Method 2: Cloning the Git Repository to the Local Computer and Associating
and Pushing It to CodeArts Repo

If you cannot import a repository online due to network issues, use this method.
Using this method, you can clone a remote repository to the local computer, and
then associate and push it to CodeArts Repo.

Step 1 Install and configure the Git client.
Step 2 Download a bare repository using the source repository address.
The following uses GitHub as an example:

1. Open a browser and enter the address of the GitHub code repository.

2. Click Code on the right, click the HTTPS tab, and click E on the right.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 21

Repo
User Guide 2 New Version (Recommended)

Go to file m

Local Codespaces

[Clone @

HTTPS GitHub CLI

https:/ /B0

Use Git or checkout with SVMN using the web URL.
[X) Open with GitHub Desktop

[7) Download ZIP

3. Open the Git Bash client on the local PC, run the following command to clone
the repository to the local PC, and run the cd command to go to the

repository directory:
git clone --bare <source_repository_address>

Step 3 Associate the local repository with CodeArts Repo and push it to CodeArts Repo.

1. On the CodeArts Repo homepage, click New Repository. In the Permissions
area, do not select Allow generation of a README file.

2. Go to the repository details page created in 1, click Clone/Download, click

the Clone with SSH or Clone with HTTPS tab as required, and click O to
obtain the repository address.

In this example, the HTTPS address is used.

Unfollow 1 ¥ Fork 0 &, Clone / Download

Clone with SSH | Clone with HTTPS

© Go tdHTTPS Passwordto view and set your
username and password. X

a

4 Zip & targz A tarbz? - tar

3. In the root directory of local source code, open the Git Bash client and run the
following command to push the local repository to the new repository:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 22

Repo
User Guide

2 New Version (Recommended)

git push --mirror <new_repository_address>

When the command is executed, the system prompts you to enter the HTTPS

account and password of the CodeArts Repo repository. Enter the correct

account and password. (For details about how to obtain an HTTP account and

password, see Changing the HTTPS Password.)

If your source repository has branches and tags, they will also be pushed to
CodeArts Repo.

--—-End

After the push is successful, check whether the migration is complete in CodeArts
Repo. (For details about how to view a CodeArts Repo repository, see Viewing the
Repository List.)

2.4.4 Uploading Local Code to CodeArts Repo

Background

CodeArts Repo allows you to perform Git initialization on local code and upload
the code to a CodeArts Repo repository.

Procedure

Step 1 Create an empty repository in CodeArts Repo.

Do not configure Programming Language of .gitignore.
Deselect Allow generation of a README file.

Step 2 Prepare the source code to be uploaded on the local computer.

If the source code is from the SVN server, refer to Migrating an SVN
Repository.

If the source code is not managed by any version control systems, run the
following Git command in the root directory of the source code (Git Bash is
used as an example):

a. Initialize a Git repository on the local computer:
git init

t imt

Initialized empty Git repository in C:/Us Jesktop/GIT task,/.git/

b. Add the code files to the local repository:
git add *

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

23

Repo
User Guide 2 New Version (Recommended)

c. Create an initial commit:
git commit -m "init commit"

Step 3 Set a remote server address for the local repository.

e If the Git repository is cloned from other systems, run the following command
to add a new remote repository:
git remote add new git@** *** com:testtransfer/Repoi.git ~ # (replace the part after new with the
repository address)
The repository address is displayed on the repository details page. The
following figure shows how to obtain the repository address.

Unfollow 1 % Fork 0 & Clone / Download

Clone with SSH | Clone with HTTPS

©[Go to 35H Keys to add your SSH Key. X
a
4 zip 4 targz A tarbz2 A tar

e If the Git repository is just initialized, run the following command to add a

remote repository named origin.
git remote add origin git@***.***.com:testtransfer/Repo1.git # (replace the part after origin with the
repository address)

Step 4 Push all code to CodeArts Repo.

git push new master # (when the Git repository is cloned from other systems)
git push origin master # (when the Git repository is just initialized)

--—-End

(11 NOTE

Basic Git knowledge is required for the preceding operations. If you have any questions
during the operation, see the Git website or contact technical support.

2.5 Creating a CodeArts Repo Repository

2.5.1 Overview
Currently, CodeArts Repo provides the following ways to create a repository.
e Creating an Empty Repository: You can create a local repository and

synchronize it to CodeArts Repo.

e Creating a Repository Using a Template: You can create a repository using a
CodeArts Repo template when there is no local repository.

e Importing an External Repository: You can import a cloud repository to
CodeArts Repo or import a CodeArts Repo repository from a region to another

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 24

https://git-scm.com

Repo
User Guide

2 New Version (Recommended)

region (see Repository Backup). The imported repository is independent of
the source repository.

- Scenario 1: Migrate Gitee and GitHub repositories and projects to
CodeArts Repo.

- Scenario 2: Migrate CodeArts projects from a region to other regions.

Forking a Repository: You can fork a CodeArts Repo repository, make
changes to the fork, and merge the changes to the source repository.

- Scenario 1: Carry out new projects based on historical projects without
damaging the repository structure of the historical projects.

- Scenario 2: Share projects of your organization with others.

NOTICE

The capacity of a single repository cannot exceed 2 GB (including LFS usage). If
the capacity exceeds 2 GB, the repository cannot be used properly and cannot
be expanded.

When the capacity of a repository exceeds the upper limit, the repository is
frozen. In this case, you are advised to delete the repository, control the
capacity locally, and push the repository again.

Common Repository Settings

Repositories

Commit Rules
Merge Requests
Protected Branches
IP Address Whitelists
More settings

2.5.2 Creating an Empty Repository

You can create an empty repository and synchronize a local repository to CodeArts
Repo. To create an empty repository on the CodeArts Repo console, perform the
following steps:

Step 1 Access the repository list page.

Step 2 Click New Repository. On the page that is displayed, enter basic repository
information.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 25

Repo
User Guide 2 New Version (Recommended)

Table 2-1 Parameters for creating an empty repository

Parameter | Ma Remarks

nda
tory
Repository | Yes | The name must start with a letter, digit, or underscore (_)
Name and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom, or period (.). The name can contain a
maximum of 200 characters.
Project Yes | e A repository must be associated with a project.

e |If there is no project under the account or you click
Create Project in the Project drop-down list, the Create
Project dialog box is displayed and you can create a
basic project. (For a basic project, only CodeArts Repo
and some services can be used. Other services are not
enabled by default. You can change a project to a basic
project on the project settings page.)

NOTE

If you create a repository in a project, the project is selected for

Project by default, and the Project parameter is hidden on the
repository creation page.

Descriptio | No | Enter a description for your repository. The description can
n contain a maximum of 2,000 characters.

Programmi | No | The .gitignore file is generated based on your selection. (For
ng details about gitignore, see gitignore Documentation.)
Language
of .gitignor
e

Permission | No | The options are as follows:

S e Allow project members to access the repository

The project manager is automatically set as the
repository administrator, and the developer is set as a
common repository member. When the two roles are
added to the project, they will be automatically
synchronized to existing repositories.

e Allow generation of a README file
You can edit the README file to record information such
as the project architecture and compilation purpose,
which is similar to a comment on the entire repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 26

https://git-scm.com/docs/gitignore

Repo
User Guide 2 New Version (Recommended)

Parameter | Ma Remarks
nda
tory

Visibility Yes | The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or commit
code.

e Public read-only
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results. You
can select an open-source license as the remarks.

Step 3 Click OK to create the repository. The repository list page is displayed.

--—-End

Associating with an Existing Directory or Repository

If you do not generate a README file when creating a common repository, you
can click the Code tab, click Create a README file or associate the repository
with an existing directory or repository. The procedure is as follows:

repo_1 (2 History

No data available.

Create a README file], or associate the repository with an existing directory or repository.

Associate This Repository with Existing Directories or Other Repositories

Run the following commands on the Git client. Learn how to install the Git client

Before cloning and pushing a repository, add an SSH key first Leam how o add an SSH key

Set a global userame and email address for the Git client

git config —global Username "your usermame”
git config —global user.email "your Email”

Clone a repository locally and publish the README file

git clone https./
cd repo_1
echo "# repo_1" > README md
it add README.md

git commit -m "add README"
git push -u origin master

Prerequisites

e You need to run following commands on the Git client. Install the Git client
and configure the Git global username and user email address. For details,
see Git Installation and Configuration.

e Set the SSH key. For details, see SSH Keys.

Procedure

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 27

Repo
User Guide

2 New Version (Recommended)

Step 1

Step 2

Step 3

(11 NOTE

The following commands have been automatically generated in the new repository. You can
copy them on the Code tab page of the repository.

Clone the repository on the local host and push the new README file.

git clone HTTP_download_address

cd taskecho "# Repository_name" > README.md
git add README.md

git commit -m "add README"

git push -u origin master

Associate an existing code directory with the repository.

cd <Your directory path>

mv README.md README-backup.md

git init

git remote add origin HTTP_download_address
git pull origin master

git add --all

git commit -m "Initial commit"

git push -u origin master

Associate with an existing Git repository.

cd <Your Git repository path>

git remote remove origin > /dev/null 2>&1

git remote add origin HTTP_download address
git push -u origin --all -f

git push -u origin --tags -f

--—-End

2.5.3 Creating a Repository Using a Template

Prerequisites

Procedure

Step 1

Step 2

Step 3

Step 4

You can create a repository using a CodeArts Repo template on the CodeArts Repo
console.

This operation must be performed in the Scrum template project.

Access the repository list page.
Click - next to New Repository and select Template Repository from the drop-
down list. The Select Template page is displayed.

On the Select Template page, enter a keyword for fuzzy search and select a
template as required.

Click Next. On the Basic Information page, enter basic repository information.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 28

Repo
User Guide

2 New Version (Recommended)

Table 2-2 Parameters for creating a repository using a template

Parameter

Man
dato

ry

Remarks

Repository
Name

Yes

The name must start with a letter, digit, or underscore (_)
and can contain periods (.) and hyphens (-), but cannot
end with .git, .atom, or period (.). The name can contain a
maximum of 200 characters.

Project

Yes

e A repository must be associated with a project.

e |If there is no project under the account or you click
Create Project in the Project drop-down list, the Create
Project dialog box is displayed and you can create a
basic project. (For a basic project, only CodeArts Repo
and some services can be used. Other services are not
enabled by default. You can change a project to a basic
project on the project settings page.)

NOTE

If you create a repository in a project, the project is selected for

Project by default, and the Project parameter is hidden on the
repository creation page.

Descriptio
n

No

Enter a description for your repository. The description can
contain a maximum of 2,000 characters.

Permission
S

No

e Allow project members to access the repository
The project manager is automatically set as the
repository administrator, and the developer is set as a
common repository member. When members of the two
roles are added to the project, they are added to the
repository member list by automatic synchronization.
You can view the list.

Visibility

Yes

The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or
commit code.

e Public
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results.
You can select an open-source license as the remarks.

Step 5 Click OK to create the repository.

--—-End

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 29

Repo
User Guide

2 New Version (Recommended)

(11 NOTE

When you create a repository by template, the repository type of the selected template will
be automatically configured for the repository.

The repository created using the template contains the repository file structure preset in the
template.

Automatically Creating a Pipeline

Step 1

Step 2

Step 3

Step 4

A pipeline can be automatically created when a repository is created using a
template. Note that the host used in CodeArts Deploy must be changed to the
actual environment so that the pipeline can be successfully executed.

On CodeArts Repo, click - next to New Repository and select Template
Repository.

On the Select Template page, set Automated Pipeline Creation to Yes in the
navigation pane to display templates that can be used to automatically create a
pipeline.

Automated Pipeline Creation
O Al
Yes

Mo

Select a template as required, click Next, enter basic repository information, and
click OK.

After the repository is created, you can view the pipeline that is automatically
created on the pipeline list page displayed.

--—-End

2.5.4 Importing an External Repository

Step 1

Step 2

You can import a cloud repository to CodeArts Repo or import a CodeArts Repo
repository from a region to another region (see Repository Backup). The
imported repository is independent of the source repository.

(11 NOTE

Currently, this function is not supported at AP-Singapore. Check your access point (AP) in
the upper left corner.

To import an external repository on the CodeArts Repo console, perform the
following steps:

Access the repository list page.

Click - next to New Repository and select Import Repository from the drop-
down list.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 30

Repo
User Guide

2 New Version (Recommended)

NOTICE

e An external repository can be a Git remote repository (HTTPS) or SVN
repository.

e The source repository port can be 80, 443, or greater than 1024.

e Currently, GitHub, Gitee, GitLab, and SVN source repositories are supported. If
the import using other types of source repositories fails, contact technical
support to check the source server whitelist.

Step 3 Enter the source repository path, and enter the username and password for
accessing the source repository. (This parameter is not required for open-source

repositories.

@ set Basic Information

)

Set Basic Information

Source Repository URL

Git -

~30min timeout of SVN of repositery importing. If timesout, using clone/push client is recommended

- Git LFS objects are not included in the imported content.

— The repository domain must be connected to the service node.

Source Repository ACcess

© Username and password not required

Usemame and password required

Step 4 Click Next. On the Create Repository page, enter the basic information about the

repository.

Table 2-3 Parameter description

Parameter | Ma | Remarks
nda
tory
Repository | Yes | The name must start with a letter, digit, or underscore (_)
Name and can contain periods (.) and hyphens (-), but cannot end
with .git, .atom. The name can contain a maximum of 200
characters.
Descriptio | No | Enter a description for your repository. The description can
n contain a maximum of 2,000 characters.
Permission | No | e Allow project members to access the repository
S The project manager is automatically set as the
repository administrator, and the developer is set as a
common repository member. When the two roles are
added to the project, they will be automatically
synchronized to existing repositories.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 31

Repo
User Guide

2 New Version (Recommended)

Parameter

Ma
nda
tory

Remarks

Visibility

Yes

The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or commit
code.

e Public read-only
The repository is open and read-only to all visitors. You
can select an open-source license as the remarks.

Branch

Yes

You can choose to synchronize the default branch or all
branches of the source repository.

Schedule

No

Select Schedule sync into repo.

e The default branch of the source repository is
automatically imported to the default branch of the new
repository every day.

e The repository becomes a read-only image repository and
cannot be written. In addition, only the branches of the
third-party repository corresponding to the default
branch of the current repository are synchronized.

(1 NOTE

You can synchronize branches manually. In addition, you can also schedule synchronization.
This setting cannot be changed after you configure it. For details, see Repository
Synchronization

Step 5 Click OK to import the repository. The repository list page is displayed.

--—-End

(11 NOTE

e The timeout interval for importing a repository is 30 minutes. If the import times out,
use the clone/push function on the client.

e The Git LFS object is not imported.
e The repository domain must be connected to the service node.

2.5.5 Forking a Repository

Application Scenarios

You can fork a CodeArts Repo repository based on an image repository, make
changes to the fork, and merge the changes to the source repository. Before

changes are merged, the changes of the fork or the source repository will not
affect each other.

As shown in the following figure, fork is applicable to the development scenario
where a large-scale project contains multiple sub-projects. The complex

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

32

Repo
User Guide 2 New Version (Recommended)

development process occurs only in image repositories and the project repository
(source repository) is not affected. Only new features that are completed can be
merged to the project repository. Fork can be considered as a team collaboration
mode.

Project version repository
(source)

Fork Merge request

Project maintainer

—
Sub-version & feature repositories
{image repositories)

Git push
Git clone
Git pull
Project participant Project participant Project participant

Differences Between Forking a Repository and Importing an External
Repository
The two modes are both repository replication. The main difference lies in the
association between the source repository and the copied repository. The details
are as follows:
e Fork
- Forks are used to copy repositories on CodeArts Repo.

- A fork generates a repository copy based on the current version of the
source repository. You can apply for merging changes made on the fork
to the source repository (cross-repository branch merge), but you cannot
pull updates from the resource repository to the fork.

e Import

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 33

Repo
User Guide 2 New Version (Recommended)

- You can import repositories of other version management platforms
(mainly Git- and SVN-based hosting platforms) or your own repository to
CodeArts Repo.

- An import also generates a repository copy based on the current version
of the source repository. The difference is that you can pull the default
branch of the source repository to the repository copy at any time to
obtain the latest version, but you cannot apply for merging changes
made on the repository copy to the source repository.

Forking a Repository
Step 1 Access the repository list page.

Step 2 Click a repository name to go to the target repository.

Step 3 Click Fork in the upper right corner of the page. In the Fork Repository dialog box
that is displayed, select the target project, enter the repository name, and select
Allow project members to access the repository.

@ Creale Build Task % Follows 0 Yrok 0 & Clone / Download

sws [@ Associated Work Items] Repository Statistics i Activities 2 Members {3 Settings
By LastCreated » =l

Fork Repository X

test

* Repository

repo

Allow project members to access the repository

P

Step 4 Click OK to fork the repository.
----End

Viewing the List of Forked Repositories
Step 1 Access the repository list page.
Step 2 Click the source repository name.

Step 3 Click Fork in the upper right corner of the page to view the list of forked
repositories, as shown in the following figure.

You can click the name of a forked repository to access the repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 34

Repo

User Guide 2 New Version (Recommended)
o repo _ ©CratebuidTask | “Folows 0 ¥ For

BlHome >Code §iMergeRequests 0 (Reviews B Associated Work ltems 1 Repository Statisties i< Activities & Members & Settings

124,36 MB 1 1 0 1 g > info

Commit ¥ Branches © Tegs & vemoers SLFS Usage Apr 11, 202%09:56:17 GMT+08:00

(I Readme
Fork repository name Follow, Fork MergeRequests ByLastUpdated Fork time
READVE md
Apr 11,2023 Apr 11,2023
Scrum007 / repot 0 0 0 10:04:11 10:04:11 Languages
GMT+08:00 GUT+0800
LCCRTE - |

--—-End

Merging Changes of a Fork to the Source Repository

Step 1 Access the repository list page.
Step 2 Click the name of the forked repository.
Step 3 Click the Merge Requests tab.

[EHome «>Code | iiMergeRequests 0 | (GReviews [@ Associated Workltems 7] Repository Statistics = Activities ~ 2 Members £} Settings

Open 0
Merged
Closed
L]
Al
e
Filter ‘
My requests Merge pending ¢
Review pending | | Approve pending

Step 4 Click New. The Create Merge Request page is displayed.
Source Branch is the one that requests merging.

Target Branch is the one that merges content.

Create Merge Request

Select two different branches for update or creation

Source branch Target Branch
o testrepo v n @ | undefinedirepot
¥ Dev - ¥ | master

Step 5 Click Next. The page for creating a merge request is displayed. The subsequent
operation process is the same as that of creating a merge request in the
repository. For details, see Creating a Merge Request.

--—-End

(1 NOTE

A cross-repository MR belongs to the source repository and can be viewed only on the
Merge Requests tab of the source repository. Therefore, reviewers, approvers, and mergers
must be members of the source repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 35

Repo
User Guide 2 New Version (Recommended)

2.6 Associating the CodeArts Repo Repository

Before using CodeArts Repo, initialize the local project files to a Git repository and
associate it with a CodeArts Repo repository.

Prerequisites
You have installed the Git client and bound the SSH key of the Git client to
CodeArts Repo.

Procedure

Step 1 Create a CodeArts Repo repository.

If you select gitignore based on your local code library, some non-development
files will be ignored and will not be managed in Git.

Step 2 Initialize the local repository to a Git repository.
Open the Git Bash client in your repository and run the following command:
git init

The following figure shows that the initialization is successful. The current folder is
the local Git repository.

int

Initialized empty GI

Step 3 Bind the CodeArts Repo repository.

Go to the CodeArts Repo repository and obtain the repository address.

2. Run the remote command to bind the local repository to the cloud repository.
git remote add <repository_alias> <repository_address>

Example:

git remote add origin git@*****/java-remote.git # Change the address to that of your repository.

By default, origin is used as the repository alias when you clone a remote
repository to the local computer. You can change the alias.

If the system displays a message indicating that the repository alias already
exists, use another one.

If no command output is displayed, the binding is successful.
Step 4 Pull the master branch of the CodeArts Repo repository to the local repository.
This step is performed to avoid conflicts.
git fetch origin master # Change origin to your repository alias.
Step 5 Commit local code files to the master branch.
Run the following commands:

git add .
git commit -m "<your_commit_message>"

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 36

Repo
User Guide 2 New Version (Recommended)

The following figure shows a successful execution.

i] Iz ~a = =t —paas— 1wk op/1iu ' Code
t g1t add .

ktop 1w Code /java

Step 6 Bind the local master branch to the master branch of CodeArts Repo repository.

git branch --set-upstream-to=origin/master master # Change origin to your repository alias.

If the following information is displayed, the binding is successful.

- /Desktap/1iu' Code/java {

$ git branch set-upstream-to=origind master

Eranch 'master’ set up to track remote ich 'master' from 'origin’.

Step 7 Merge the files in the CodeArts Repo repository and local repository and store
them locally.

git pull --rebase origin master # Change origin to your repository alias.

The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.

ma:
ed and updatec

Step 8 Push the local repository to overwrite the CodeArts Repo repository.

Run the push command because the repositories have been bound:
git push

After the operation is successful, pull the repository to verify that the version of
the CodeArts Repo repository is the same as that of the local repository.

i

% git push
Enumeratin
Counting

----End

2.7 Cloning or Downloading Code from CodeArts Repo
to a Local PC

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 37

Repo
User Guide 2 New Version (Recommended)

2.7.1 Overview

In addition to Managing Files, the Git-based CodeArts Repo also allows you to
download repository files to a local PC.

There are three methods of cloning or downloading a repository to a local PC for
the first time:

e Using SSH to Clone Code from CodeArts Repo to a Local PC
e Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
e Downloading a Code Package on a Browser

2.7.2 Using SSH to Clone Code from CodeArts Repo to a Local
PC

Prerequisites
Your network can access CodeArts Repo. For details, see Network Connectivity
Verification.

Cloning Code on the Git Bash Client Using SSH

This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

Step 1 Download and install the Git Bash client.
Step 2 Configure an SSH key.
Step 3 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

Unfollow 1 % Fork 0 & Clone / Download

Clone with SSH | Clone with HTTPS

©co to 35H Keys to add your SSH Key. X
m]
+ zip +targz oL tarbz2 4 tar

(11 NOTE

If no SSH key is available, click SSH Keys to configure one. For details, see SSH key.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 38

Repo
User Guide 2 New Version (Recommended)

Step 4 Open the Git Bash client.

Create a folder on the local PC to store the code repository. Right-click the blank
area in the folder and open the Git Bash client.

(11 NOTE

The repository is automatically initialized during clone. You do not need to run the init
command.

Step 5 Run the following command to clone code from CodeArts Repo:
git clone <repository _address>

repository_address in the command is the SSH address obtained in Step 3.

If you clone the repository for the first time, the system asks you whether to trust
the remote repository. Enter yes.

After the command is executed, a folder with the same name as CodeArts Repo is
displayed, and a hidden .git folder exists in the folder, indicating that the
repository is cloned.

Step 6 Run the following command to go to the repository directory:
cd <repository_name>

You will be taken to the master branch by default.

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:

e Check whether your network can access CodeArts Repo.
Run the following command on the Git client to test the network connectivity:
ssh -vT git@********** com

If the returned information contains Could not resolve hostname code********** com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts
Repo console.

e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using SSH

This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

Step 1 Download and install the TortoiseGit client.

Step 2 Obtain the repository address. (If there is no repository, create one.)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 39

Repo
User Guide 2 New Version (Recommended)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to CodeArts Repo from the local PC.

Step 3 Go to the local directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

View b
Sort by >
Group by > F
Refresh

Customize this folder...

Paste 3
Paste shortcut

Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to b
&l Git Clone...
[T Git Create repository here... 1
& TortoiseGit b
Mew > 1
Properties !

Step 4 In the dialog box displayed, paste the copied repository address to the URL field,
select Load Putty Key, choose the private key file, and click OK.

&' Git clone - TortoiseGit X

Clone Existing Repository |

URL: | hd | Browse... -
Directory: ‘ ‘ Browse...
(pepth 1 [Recursive [clone into Bare Repo [Ino Checkout
[Branch [Origin Name CILFs
Load Putty Key | v|
From SVN Repository

(1 From SYN Repository

Trunk: trunk Tags: tags Branch: branches

From: i] Username:

ncel || b

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 40

Repo
User Guide 2 New Version (Recommended)

Step 5 Click OK to start cloning the repository. If you clone the repository for the first
time, the TortoiseGit client asks you whether to trust the remote repository. Click
Yes.

Step 6 The cloning duration is affected by the repository size. The following figure shows
the cloning process.

&' Di\gitTest\yilia_test - Git Cormmand Progress - TortoiseGit — d x

.

e -

[master (rooct-commit) c63cl8@] welcome~!

Success (188 ms @ 3/5/2020 4:04:51 PM)

E Push... |v; Abort

--—-End

Cloning a Repository on Linux or macOS Using SSH

After the environment is configured (see Installing Git for Linux or Installing Git
for macOS), the clone operations of the Git client on Linux or macOS are the
same as those in Cloning Code on the Git Bash Client Using SSH.

2.7.3 Using HTTPS to Clone Code from CodeArts Repo to a
Local Computer

Cloning Code on the Git Bash Client Using HTTPS

This section describes how to use the Git Bash client to clone a repository of
CodeArts Repo to a local PC.

NOTICE

The maximum size of a package that can be pushed at a time using HTTPS is 200
MB. If the size is greater than 200 MB, use the SSH mode.

Federated users cannot be bound to email addresses and do not support the
HTTPS protocol.

Step 1 Download and install the Git Bash client.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0001.html

Repo
User Guide 2 New Version (Recommended)

Step 2 Configure an HTTPS password.

Step 3 On the CodeArts Repo homepage, click the name of a repository. On the
repository details page displayed, click Clone/Download, click Clone with HTTPS,
and copy the repository address.

Unfollow 1 % Fork 0 & Clone / Download

Clone with 33H | Clone with HTTPS

© Go td HTTPS Password}o view and set your
username and password. X

L zip A4 targz L tarbz2 & tar

(1 NOTE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see
HTTPS Password.

Step 4 Open Git Bash, navigate to the directory where you want to clone the repository,
and run the following command. For the first clone, enter the username (account
name) and HTTPS password.

git clone HTTP_download_address

Step 5 After the username (account name) and HTTPS password are entered, the
repository is cloned.

Step 6 Run the following command to go to the repository directory:

cd <repository_name>
You will be taken to the master branch by default.

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:

e Check whether your network can access CodeArts Repo.
Run the following command on the Git client to test the network connectivity:
ssh -VT git@********** com

If the returned information contains Could not resolve hostname code********** com:
Name or service not known as shown in the following figure, your network is
restricted and you cannot access CodeArts Repo. In this case, contact your local network
administrator.

e Check the HTTPS password and reset the password if necessary.
e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 42

Repo
User Guide 2 New Version (Recommended)

Cloning Code on the TortoiseGit Client Using HTTPS

This section describes how to use the TortoiseGit client to clone a repository of
CodeArts Repo to a local PC.

Step 1 Download and install the TortoiseGit client.
Step 2 Configure an HTTPS password.

Step 3 On the CodeArts Repo homepage, click the name of a repository. On the

repository details page displayed, click Clone/Download, click Clone with HTTPS,
and copy the repository address.

Unfollow 1 % Fork 0 & Clone / Download

Clone with SSH Clone with HTTPS

O Go tc|) HTTPS Password Io view and set your

username and password. X
https /7§ m]
- zip o targz - tarbz2 s tar

(11 NOTE

If no HTTPS password is available, click HTTPS Password to configure one. For details, see
HTTPS Password.

Step 4 Go to the directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 43

Repo
User Guide

2 New Version (Recommended)

View b
Sort by >
Group by >
Refresh

Custornize this folder...

Paste

Paste shortcut
Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to e

gl Git Clone...
[Git Create repository here...

2 TortoiseGit b

Mew >

Properties

Step 5 In the dialog box displayed, paste the copied repository address to the URL field

Step 6

Step 7

and click OK.

&' Git clone - TortoiseGit

Clone Existing Repository |

URL: | hd | Browse... -
Directory: ‘ ‘ Browse...
(pepth 1 [Recursive [clone into Bare Repa [Ino Checkout
[Branch [Origin Name CILFs
Load Putty Key | v|
From SVN Repository

1 From SVN Repository

Trunk: trunk Tags: tags branches

From:] Username:

cancel el

If you clone a repository on TortoiseGit for the first time, enter the username and

HTTPS password as prompted.
Wait until the clone is complete.

--—-End

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

44

Repo
User Guide 2 New Version (Recommended)

Cloning a Repository on Linux or macOS Using HTTPS

After the environment is configured (see Installing Git for Linux or Installing Git
for macOS), the clone operations of the Git client on Linux or macOS are the
same as those in Cloning Code on the Git Bash Client Using HTTPS.

2.7.4 Downloading a Code Package on a Browser

In addition to clone, CodeArts Repo also allows you to package and download the
code of a cloud repository to the local PC.

The downloaded code repository file is not associated with CodeArts Repo and
cannot be pushed back to CodeArts Repo.

The procedure is as follows:
Step 1 Access the repository list page.
Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Click Clone/Download. In the dialog box that is displayed, click the required code
package format.

Unfollow 1 % Fork 0 & Clone / Download

Clone with SSH Clone with HTTPS

) Go to HTTPS Password to view and set your

username and password. X
hitps /& ol
= zZip ~ fargz - tarbz2 ~ tar

--—-End

(10 NOTE

e If an IP address whitelist is set for the repository, only hosts with whitelisted IP
addresses can download the repository source code on the page. If no IP address
whitelist is set for the repository, all hosts can download the repository source code.

e Currently, the zip, tar.gz, tar.bz2, and tar package formats are supported.

e The master branch of CodeArts Repo will be downloaded.

2.8 Using CodeArts Repo

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 45

Repo
User Guide 2 New Version (Recommended)

2.8.1 Viewing the Repository List

The repository list is the entry to CodeArts Repo. You can access the repository list
in either of the following ways:

e On the CodeArts homepage, click Repo under the @ Services icon. The
repository list page is displayed.

(11 NOTE

All code repositories of the tenant are displayed.

e On the CodeArts homepage, move the cursor to the card of the target project,
and click Code. The repository list page is displayed.

(1] NOTE
All code repositories of the project are displayed.

You can create a repository, configure a repository, and obtain the repository
address.

e On your homepage, you can view repositories by category, such as Followed,
Participated, and Created. You can click the name of a target repository to
access the repository. You can view the combination requests of Created by
me, Merge pending, Review pending, and Approve pending. You can click
the name of a target merge request to access the combination request.

[c.] Repositories

L, Followed

L, Participated
A% Created

[=] Task

1"l Merge Requests

(10 NOTE

If you access a project of CodeArts Repo, this function is hidden.

e You can create a repository by New Repository, Template Repository or
Import Repository.

e Filter a Repository: You can select All repositories, Unlocked repositories, or
Locked repositories. For details about how to lock a repository, see
Repository Locking.

e You can automatically synchronize project members to a Repository.

e Click = to follow a repository. After a repository is being followed, it is
displayed on the top of the repository list.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 46

Repo
User Guide

2 New Version (Recommended)

e Associated work Items with CodeArts Req to improve efficiency.

e Manage members by synchronizing members from a project with one click or
adjust the permission of a member separately.

e Delete a repository by entering a repository name.

(11 NOTE

This operation cannot be canceled and deleted repositories cannot be restored. Please
double-check.

2.8.2 Viewing Repository Details

In the repository list, click a repository name to go to the repository details page.
CodeArts Repo provides abundant console operations.

Table 2-4 Description

Page

Function Description

Reposito

ry
Homepa

ge

Displays the repository capacity, commits number , branches
number , tags number , members number, LFS usage, creation time,
creator, visible scope, repository status, README file, language, and
percentage of each language.

Code

e File list: You can create files, directories, and submodules, upload
files, modify files online, and view commit history.

e Submit: You can view commit records and repository network
diagrams.

e Branch: Branches can be managed on the console.
e Tag: Tags can be managed on the console.

e Comparison: You can view code changes between branches or
between tag versions by comparison.

Merge
Requests

Merge requests of branches can be managed on the console.

Reviews

You can view the review records of MRs and commits.

Associat
ed Work
Items

List of associated work items. You can associate CodeArts Req work
items with the repository code to improve efficiency.

Reposito

ry
Statistics

Visualized charts of repository commits, such as code contribution.

Activity

You can view the dynamic information about the repository.

Member
S

You can manage repository members, for example, synchronizing
members from the project by one click or changing the permissions
of a member.

Settings

Repository settings. Only the repository administrator and the
repository creator can view this tab page and configure settings.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 47

Repo

User Guide 2 New Version (Recommended)
In addition, the repository details page provides quick entries to the following
functions:

e Configure builds: Create a build task.

e Follow: Click to follow the repository. The followed repositories are pinned on
top.

e Fork: displays the number of forks of a repository. You can click this button to
create a fork.

e Clone/Download: You can obtain the SSH address and HTTPS address of a
repository or directly download the code package.

(1 NOTE
The following figures show the adaptation function of CodeArts Repo. When the length of
the repository page is greater than the window length, the repository tab page is moved to
the top after you scroll down. The position in the red box in the following figure is
collapsed so you can view repository information easily. After you scroll up, the page layout
is restored.
;;;epozti’F o o CrealeBuldTask “Folows 0 YFok O

vl el Pl P Pl e

2.8.3 Viewing Repository Homepage
The Home tab page displays the basic information about a repository.

BIHome <>Code 33 Merge Requests 0 @ Reviews B Associated Work ltems 4] Repository Statistics = Activities 2 Members {3 Settings
0.1 MB 1 1 0 1 0MB © Info
[Files < Commits ¥ Branches © Tags & Members S LFS Usage Jul 06, 2023 16:58:36 GMT+08:00
S

None Private
Normal

README.md M Readme

README md

Build Command: mvn package -Dmaven test skip=true -U

Pipeline

- Whel natic Pipeline Creation Is Supported: Not supported

Table 2-5 Parameter description

Parameter Description
Files Capacity of the current repository
NOTE

e The capacity of a single repository cannot exceed 2 GB (including
LFS usage). If the capacity exceeds 2 GB, the repository cannot
be used properly and cannot be expanded.

e When the capacity of a repository exceeds the upper limit, the
repository is frozen. In this case, you are advised to delete the
repository, control the capacity locally, and push the repository
again.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 48

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

Commits

Displays the number of commits in the current repository.
You can click the icon to go to the Code tab page and view
commit details.

Branches

Displays the number of branches in the current repository.
You can click the icon to go to the Code tab page and
manage branches.

Tags

Displays the number of tags in the current repository. You
can click the icon to go to the Code tab page and manage
tags.

Members

Displays the number of members in the current repository.
You can click the icon to go to the Members tab page and
manage members.

LFS Usage

Collect statistics on the LFS usage of the current repository.

Repository
description

The description entered during repository creation.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 49

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

README.md

You can preview README files. If no Readme file exists in
the repository, click Create Readme to create one.

Name: The default file name is README.md.
Format: The options are as follows:
e text: indicates text data or a text string.

e base64: Base64 is a method of representing binary data
based on 64 printable characters.

Content: The value can be customized.
e If the format is text, enter common text.

e |[f the format is base64, enter Base64-encoded content
that can pass the encoding verification.

Commit Message: Enter the commit information about the
file or folder, which can be customized.

Create File

baseb4

Characters left: 10485753 more characters
* Commit Message
Add readme

Characters left: 1990 more characters

Cancel

Info

Displays the creation time, creator, visible scope, and status
of a repository.

Readme

Displays the README file of the current repository. You can
click the file name to go to the Code tab page and view the
file content.

Languages

Displays the percentage of each language by file size in the
current repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

50

Repo
User Guide 2 New Version (Recommended)

2.8.4 Managing Code Files

2.8.4.1 Managing Files
CodeArts Repo allows you to edit and compare files, and trace file changes.

When you access repository details console, the system locates the Files subtab
on the Code tab page. You can switch to different branches and tags to view the
files in the corresponding version. As shown in the following figure, the file list
under the main branch is displayed on the left, the Repository name (file details
of a branch or tag version) and History (branch or tag version) tab pages are
displayed on the right.

E Home <> Code 1 Merge Requests 0 (& Reviews B Associated Work Items 711 Repository Statistics = Activities & Members 1 settings
[%10.11 MB Files 1commits ¥ 1Branches © 0Tags T1 Comparison

master

com

com €290d125 - initial commit
[.gitignore
) gitignore £2004125 - initial commit
M# README. md

Mi README.md €290d125 - initial commit
build xm|

build xml c290d125 - initial commit

File List

The file list is on the left of the Files tab page of the repository. The file list
provides the following functions:

1. Click a branch name to switch the branch and tag. After the branch and tag
are switched, the file directory of the corresponding version is displayed.

‘ master ~ ‘ =

\ repo / | + Creat
Branches 2 Tags 0
T master default
Dev

f
1
t
+ Create Branch 3
S

2. Click Q to display the search box. You can search for files in the file list.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 51

Repo

User Guide 2 New Version (Recommended)
: master w
Q
SIC
1Y gitignore
README.md
porm.xmi
3. Click " Creale v . The following functions can be extended:

- Creating a file

Creating a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Create File page, enter the file name, select the target template
type, select the encoding type, enter the file content and commit
information, and click OK.

L] NOTE
The Commit Message field is equivalent to the -m message in git commit and
can be used for Viewing Associated Work Items.
- Creating a directory

Creating a directory on the CodeArts Repo console is to create a folder
structure, and run the add, commit, and push commands. A commit
record is generated.

A .gitkeep file is created at the bottom of the directory by default
because Git does not allow a commit of an empty folder.

On the Create Directory page, enter the catalog name and commit
information, and click OK.

- Creating a submodule
- Uploading a file

Uploading a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Upload File page, select the target file to be uploaded, enter the
commit information, and click OK.

(1] NOTE

Move the cursor to the folder name and click * to perform the preceding operations
in the folder.

[+
4. Move the cursor to the file name and click — to change the file name.

Renaming a file on the CodeArts Repo console is to change a file name, and
run the add, commit, and push commands. A commit record is generated.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 52

Repo
User Guide 2 New Version (Recommended)

5. You can click a file name to display the file content on the right of the page.
You can modify the file content, trace file modification records, view historical
records, and compare the file content.

Repository Name Tab Page: Viewing File Details of a Branch or Tag Version

By default, the repository name tab page displays file details of the master
branch.

repo / + Create v

o

com c2004125 - initial commit Repo Updated Mar 24, 2023 11:07

B

45 GMT+08.00

gitignore €290d125 - initial commit Repo Updated Mar 24, 2023 1

IS
It
B

07:45 GMT+08:00

README md c290d125 - initial commit Repo Updated Mar 2- 11:07:45 GMT+08:00

build.xm! c2900125 - initial commit Repo Updated Mar 2-

4, 2023 11

23 11:07:45 GMT+08.00

It displays the following information:

e Filee name of a file or folder.

e Commit message. message of the last commit to the file or folder (-m in the
commit command). You can click the message to display the commit record.

e (reator. creator of the last commit to the file or folder.
e Update time: last update time of the file or folder.

L] NOTE
Commit messages are required for the edit and delete operations. They are similar to -m in

the git commit command and can be used for associating work items. For details, see
Viewing Associated Work Items.

History Tab: Viewing the Commit History of a Branch or Tag Version

The History tab page displays the commit history of a branch or tag version.

repo / + Create v

o

All Members - Q

initial commit = .
2900125 | & |
Repo Created Mar 24, 2023 11:07:45 GMT+08:00

&: Create Branch

10 ~ | PerPage, Total 1 Records l % Create Tag

£ Chemy-Pick
& Revert

@ Browse Code

On this page, you can perform the following operations on the commit history:
e Click a commit name to go to the commit details page.

e Click * to extend the following functions:
- Create Branch.

- Create Tag: You can create a tag for this commit. For details, see What is
a tag.

- Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 53

Repo
User Guide 2 New Version (Recommended)

- Revert: undoing this commit
- Browse Code.

Managing Repository Files
You can click a file name to manage the file. The functions are as follows:

repo / buildxml

build xmi

(11 NOTE

When you maximize the browser window, the functions in the drop-down menu shown in
the preceding figure are displayed in tile mode.

o File name. View the detailed content of the file.

Table 2-6 Screen description

Screen Function Description

Function

File Capacity Indicates the capacity of the file.

Full Screen Full screen to view the file content
Copy Code Copy the file content to the clipboard.
Open Raw You can view the original data of the file.
Edit Edit the file online.

Download Download the file to the local PC.
Delete Delete a file

File content The email content is displayed.

[Click this icon to add review comments.

e Blame: View the change history of a file and trace operations.

On this tab page, a modifier corresponds to their modified content. You can a
record to view the commit details.

e History: View the commit history of the file.

On this page, you can perform the following operations on the commit
history:

- Click a commit name to go to the commit details page.

-k provides the following functions:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 54

Repo
User Guide 2 New Version (Recommended)

® Create Branch.
" Create Tag: You can create a tag for this commit. (Introduction)

® Cherry-Pick: Use the commit as the latest commit to overwrite a
branch. It is used to retrieve a version.

® Revert: undoing this commit

" Browse Code.
e Comparison: compares the committed differences.

The differences compared on the CodeArts Repo console are displayed in a
better way than those on the Git Bash client. You can select different commit
batches on the GUI for difference comparison.

L] NOTE
The comparison result shows the impact of merging from the left repository version to
the right repository version on the files in the right repository. If you want to know the

differences between the two file versions, you can adjust the left and right positions,
compare them again, and learn all the differences based on the two results.

2.8.4.2 Managing Commits

On the Code and Commits tab pages, view the commit records and graph of the

repository.
Commits
This tab displays the entire commit records of a branch or tag in the current
repository. You can filter records by time segment, committer, commit message, or
commit ID.
Commits Graph master v - Al - Q
2023-03-09 1 Commit
initial commit [e
EARESB Created Mar 09,2023 104007 GMT+02:00 i
Graph

The commit graph of a repository displays the entire commit history (including the
action, time, committer, commit message generated by the system or specified by
the committer) of a branch or tag and the relationship between commits in flow
chart.

You can switch between branches or tags. You can click a commit node or commit
message to go to the corresponding commit record.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 55

Repo

User Guide

2 New Version (Recommended)

Commits Graph master w

initial commit

(11 NOTE

Compared with the History tab page under the Files tab page, the commit graph can
display the relationship between commits.

2.8.4.3 Managing Branches

GitFlow

Branching is the most commonly used method in version management. Branches
isolate tasks in a project to prevent them from affecting each other, and can be
merged for version release.

When you create a CodeArts Repo or Git repository, a master branch is generated
by default and used as the branch of the latest version. You can create custom
branches at any time for personalized scenarios.

As a branch-based code management workflow, GitFlow is highly recognized and
widely used in the industry. It is recommended for you to start team-based
development.

GitFlow provides a group of branch usage suggestions to help your team improve
efficiency and reduce conflicts. It has the following features:

e Concurrent development: Multiple features and patches can be concurrently
developed on different branches to prevent intervention during code writing.

e Team collaboration: In team-based development, the development content
of each branch (or each sub-team) can be recorded separately and merged
into the project version. An issue can be accurately detected and rectified
separately without affecting other code in the main version.

o Flexible adjustment: Emergency fixes are developed on the hotfix branch
without interrupting the main version and sub-projects of each team.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 56

Repo
User Guide

2 New Version (Recommended)

@@
@ L _

Feature @
Develop @ - @
Release ®
HotFix

Master

@

Table 2-7 Suggestions on using GitFlow branches

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2. .
Descri | Core Main Feature Release Emergency
ption branch, developmen | developmen | branch, fix branch,
which is t branch, t branch, which is which is
used which is which is used to used to fix
together used for used to check out a | bugs in the
with tags to | routine develop version to current
archive developmen | new be released. | version.
historical t and must | features.
versions. always be Multiple
Ensure that | the branch | branches
all versions | with the can exist
are latest and concurrently
available. most . Each
complete branch
functions. corresponds
to a new
feature or a
group of
new
features.
Validit | Long-term Long-term | Temporary | Long-term | Temporary
y
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 57

Repo

User Guide 2 New Version (Recommended)
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2...

When | Created Created e Created Created Created
to when the after the based on | based on based on
Create | project master the the develop | the
repository is | branch is develop | branch correspondi
created created. branch before the ng version
when a first release. | (usually the
new master
feature branch)
develop when issues
ment are found in
task is the master
received. or bug
e Created version.
based on
the
parent
feature
branch
when the
current
feature
develop
ment
task is
split into
sub-
tasks.
When | Never Not Developed Never Developed
to recommend | when being when being
Develo ed created. created.
p This
Branch
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 58

Repo

User Guide 2 New Version (Recommended)
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | e When o After After a child | When a -
to the new feature version is to
Merge project features | branch is be released,
Other version is are developed the develop
Branch frozen, develope | and tested, | branch is
es into the d, it is merged | merged into
This develop feature into the this branch.
Branch or branches | parent
release are feature
branch merged branch.
are into this
merged branch.
into this | ¢ \When a
branch. new
o After version
bugs starts to
found in be
the develope
released d, the
version last
are fixed, version
hotfix (release
branches or
are master
merged branch)
into this is
branch. merged
into this
branch.
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 59

Repo
User Guide

2 New Version (Recommended)

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | - e When a After new e When a When the
to version is | features are version is | correspondi
Merge to be developed released | ng bug
This released, | and tested and fixing task
Branch this on this archived, | is complete,
to branch is | branch, it is this this branch
Other merged merged into branch is | is merged
Branch into the | the develop merged into the
es release branch. into the master and
branch. master develop
e When a branch. branches as
version is e Whena |2 Ppatch.
to be new
archived, version is
this develope
branch is d based
merged ona
into the released
master version,
branch. this
branch is
merged
into the
develop
branch
to
initialize
the
version.
When | - - After the - After the
to End correspondi correspondi
ng features ng bugs are
are fixed and
accepted the version
(released is accepted
and stable) (released
and stable)

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

60

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

GitFlow has the following rules:

e All feature branches are pulled from the develop branch.

e All hotfix branches are pulled from the master branch.

e All commits to the master branch must have tags to facilitate rollback.

e Any changes that are merged into the master branch must be merged into the develop
branch for synchronization.

e The master and develop branches are the main branches and they are unique. Other
types of branches can have multiple derived branches.

Creating a Branch on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Click the Code and Branches tabs. The branch list page is displayed.

Step 4 Click Create. In the displayed dialog box, select a version (branch or tag) based on
which you want to create a branch and enter the branch name. You can associate
the branch with an existing work item.

Create Branch

Characters left: 2000 more characters.

Work ltems to Associate

Cancel

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 61

Repo
User Guide 2 New Version (Recommended)

Step 5 Click OK. The branch is created.
----End

Managing Branches on the Console
You can perform the following operations in the branch list:

e Filtering branches

- My: displays all branches created by you. The branches are sorted by the
latest commit time in descending order.

- Active: displays the branches that have been developing in the past three
months. Branches are sorted by the last commit time in descending order.

- Inactive: displays the branches that have not been developed in the past
three months. Branches are sorted by the last commit time in descending
order.

- AlL displays all branches. The default branch is displayed on the top.
Other branches are sorted by the last commit time in descending order.

e You can click a branch name to go to the Files tab page of the branch and
view its content and history.

e You can click a commit ID to view the content latest committed on the details
page.
e Select branches and click Batch Delete to delete branches in batches.

e Youcanclick ¢ to associate work items with the branch.

e Youcan click “ to go to the Comparison tab page and compare the current
branch with another branch.

e C(lick = to download its compressed package.

e Youcanclick © tothe Merge Requests tab page and create a merge
request.

o Click @ to go to the repository settings page and set the branch as protected.

e You can click O] to delete a branch as prompted.

NOTICE

You can download the compressed package of source code on the page only for
hosts that have configured IP address whitelists.

If you delete a branch by mistake, submit a service ticket to contact technical
support.

In addition, you can configure branches on the console.

e Merge Requests
e Default Branches
e Protected Branches

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 62

Repo
User Guide

2 New Version (Recommended)

Common Git Commands for Branches

Creating a branch
git branch <branch_name> # Create a branch based on the current working directory in the
local repository.

Example:

git branch branch001 # Create a branch named branch001 based on the current working
directory in the local repository.

If no command output is displayed, the creation is successful. If the branch
name already exists, as shown in the following figure, create a branch with
another name.

branch brancho0l

: A branch named "branch00l” al

Switching a branch

Switching a branch is to check out the branch file content to the current

working directory.
git checkout <branch_name> # Switch to a specified branch.

Example:
git checkout branch002 # Switch to branch002.

The following information shows that the switch is successful.

it branch00l

branch "branch00l’

Switching to a new branch

You can run the following command to create a branch and switch to the new
branch directly.

git checkout -b <branch_name> # Create a branch based on the current working directory in the
local repository and directly switch to the branch.

Example:

git checkout -b branch002 # Create a branch named branch002 based on the current working
directory in the local repository and directly switch to the branch.

The following information shows that the command is successfully executed.

t -b branchooz
new branch "branch0oo2’

Viewing a branch

You can run the corresponding command to view the local repository branch,
the remote repository branch, or all branches. These commands only list
branch names. You can switch to a branch to view specific files in a branch.

git branch # View the local repository branch.
git branch -r # View the remote repository branch.
git branch -a # View the branches of the local and remote repositories.

The following figure shows the execution result of the three commands in
sequence. Git displays the branches of the local and remote repositories in
different formats. (Remote repository branches are displayed in the format of
remote/<remote_repository alias>/<branch_name>.)

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 63

Repo
User Guide

2 New Version (Recommended)

$ git branch
branchool

£ git branch -r

$ git branch -a
branchool

htt
htt

Merging a branch

When a development task on a branch is complete, the branch needs to be
merged into another branch to synchronize the latest changes.

git merge <name_of_the_branch_merged._to_the_current_branch> # Merge a branch into the
current branch.

Before merging a branch, you need to switch to the target branch. The

following describes how to merge branch002 into the master branch.
git checkout master # Switch to the master branch.
git merge branch002 # Merge branch002 into the master branch.

The following figure shows the execution result of the preceding command.

The merge is successful, and three lines are added to a file.

i
Your branch is

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

64

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

The system may prompt that a merge conflict occurs. The following shows that a
conflict occurs in the fileOnBranch002.txt file.

it merge bran

erging t1
N in f11e0nBr;
= and then

To resolve the conflict, open the conflicting file, manually edit the conflicting code (as
shown in the following figure), and save the file. Then run the add and commit
commands again to save the result to the local repository.

el _HEAD

1l <«—— conflict

222
srrarrr branchl0Z
alale!
ZlaLe!

This is similar to resolving a conflict that occurs when you commit a file from the local
repository to the remote repository. For details about the working principle, see
Resolving Code Conflicts in an MR.

A proper collaboration mode can prevent conflicts.

e Deleting a local branch
git branch -d <branch_name>

Example:

git branch -d branch002 # Delete branch002 from the local repository. The following
information shows that the operation is successful.

% git branch -d brancho

Deleted branch branch002

e Deleting a branch from the remote repository
git push <remote_repository_address_or_alias>-d <branch_name>

Example:

git push HTTPSOrigin -d branch002 # Delete branch002 from the remote repository whose alias
is HTTPSOrigin. The following information shows that the deletion is successful.

e Pushing a new local branch to the remote repository
git push <remote_repository_address_or_alias> <branch_name>

Example:

git push HTTPSOrigin branch002 # Push the local branch branch002 to the remote repository
whose alias is HTTPSOrigin. The following information shows that the push is successful.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 65

Repo
User Guide 2 New Version (Recommended)

(10 NOTE

If the push fails, check the connectivity.
e Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@******** com

If the returned information contains connect to host ********* com port 22:
Connection timed out, your network is restricted and you cannot access CodeArts
Repo. In this case, contact your local network administrator.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see SSH Keys. Alternatively, check whether the HTTPS password is
correctly configured.

2.8.4.4 Managing Tags

Git provides tags to help your team manage versions. You can use Git tags to
mark commits to manage important versions in a project and search for historical
versions.

A tag points to a commit like a reference. No matter how later versions change,
the tag always points to the commit. It can be regarded as a version snapshot that
is permanently saved (the version is removed from the repository only when being
manually deleted).

When using Git to manage code, you can search for and trace historical versions
based on commit IDs. A commit ID is a long string (as shown in the following
figure) that is difficult to remember and not identifiable, compared with version
numbers such as V 1.0.0. Therefore, you can tag and name important versions to
easily remember and trace them. For example, tag a version as myTag_V1.0.0 or
FirstCommercialVersion.

commit 535 56deddf204b 841926eef630bbd (tag: myTag_V1.0.0)

Author: O

Date:

Creating a Tag for the Latest Commit on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Click the Code and Tags tabs. The tag list is displayed.
Step 4 Click Create. In the following dialog box that is displayed, select a branch or tag.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 66

Repo

User Guide 2 New Version (Recommended)
Create Tag X
* Based On
test W
* Tag Name
Description
You can add 2000 more characters
Cancel
L] NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight

tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Step 5 Click OK. A tag is generated based on the latest version of the branch. The tag list
is displayed.

----End

Creating a Tag for a Historical Version on the Console
Step 1 Access the repository list.

Step 2 Click a repository to go to the details page. On the Code tab page, click the Files
and History tabs.

Step 3 In the historical commit list, click * next to a commit record and select Create
Tag. The dialog box for creating a tag for the historical version is displayed.

(1 NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight

tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 67

Repo
User Guide

2 New Version (Recommended)

Step 4 Click OK. A tag is generated based on the specified historical version of the
branch. The tag list is displayed.

----End

Managing Tags on the Console

All tags in the remote repository are displayed in the tag list. You can perform
the following operations:

Tag Name Create Info Operation
Version2.0 & —
SIS naced On master Created Apr 13,2023 17 A
Repo Commit 5] - initial commit Mar 24, 2023 11:07:45 GMT-08:00
Version1.0 =

WSTRSIAIAG Bose0 On master Created Apr 12,2023 17 L

125 - initial commit Mar 24, 2023 11:07:45 GMT+08:00

Repo Committed ¢

Click a tag in the Tag Name column to go to the file list of the tagged
version.

Click a commit ID to go to the commit details page.

Click — to download the file package of the labeled version in tar.gz or
zip format.

Click © to delete a tag from CodeArts Repo. (To delete the tag from the
local repository, perform the clone, pull, or -d operation.)

NOTICE

If an IP address whitelist is set for the repository, only hosts with whitelisted
IP addresses can download the repository source code on the page. If no IP
address whitelist is set for the repository, all hosts can download the
repository source code on the page.

You can create a branch based on a tag.

On the console, click the Files tab and click the file name of the target file.
Click the Comparison tab to compare commit records of the file.

pomml - EyBlame (QHstoy) Companison

0 fibe5as - Rename buld.ml v - dleccdD - update pomsmi v

default="nain"y

1 ¢project nane="javakntDeno" basedir="."
<property environnent="
<property nane="src.dir"

1 ¢project nane="javalntDemo" basedir="." default="nain"y
2 {property environment="en" /> 1

value="con"/>

jalue="con"/>

3 (property nane="src.dir" 3

4 4

5 <property nan value="build"/> 51 <property nane="build. dir" value="build"/>

6 {proerty nane p="§{build.dir}/classes")> 6| <property name="classes.dir" value="§{build.dir}/classes"/>

7 {property nane="jar.dir" {build.dir}/jar"f> 7| <property name="jar.dir" "$build.dirl/far"f>

8 (proerty nane="repor {build.dir}H/junitreport"/> 8| <property nane="report.dir" "${build.dir}/junitreport”/s

9 <taskdef nane="findbugs" classnane="edu.und.cs.Findbugs anttask.FindBugsTe @ | <taskdef nane="findougs" classnane="edu.und.cs. Findbugs . anttask.FindBugsTa
16 <property nane="fb.report.dir" values"${build.dir}/findougs' /> 164

i 1

12 (path id="application” location="§{jar.dir}/${ant project.name}.jar"/> 12| <path id="application” location="§{jar.dir}/${ant project. name}.jar"/5

Tag Classification

Git

provides two types of tags:

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 68

Repo
User Guide

2 New Version (Recommended)

Lightweight tag: is only a reference pointing to a specific commit. It can be

considered as an alias for the commit.
git tag <tag_name>

The following figure shows the information of a lightweight tag. You can find
that it is an alias of a commit.

diff --git a/7370149fix b/7370149fix
new file mode 100644

index 0000000..76d9127

--- /dev/null

+++ b/7370149fix

o newline at end of file

Annotated tag: points to a specific commit, but is stored as a complete object
in Git. Compared with lightweight tags, annotated tags contain messages
(similar to code comments). In addition to the tag name and message, the
tag information includes the name and email address of the person who
creates the tag, and tag creation time/date.

git tag -a <tag_name>-m "<message>"

The following figure shows the information of an annotated tag, which points
to a commit and contains more information than that of a lightweight tag.

tag: namel, tag: esay

diff --git a/7370149fix b/7370149fix
new file mode 100644
index 0000000. .76d9127
- /dev/null
+++ b/7370149fx

ne at end of file

(11 NOTE

Both types of tags can identify versions. Annotated tags contain more information and are
stored in a more stable and secure structure in Git. They are more widely used in large
enterprises and projects.

Common Git Commands for Tags

Creating a lightweight tag
git tag <tag_name> # Add a lightweight tag to the latest commit.

Example:

git tag myTag1 # Add a lightweight tag myTag1 to the latest commit.
Creating an annotated tag

git tag -a <tag name>-m "<message>" # Add an annotated tag to the latest commit.
Example:

git tag -a myTag2 -m "This is a tag." # Add an annotated tag myTag2 to the latest commit, and the
message is "This is a tag.".

Tagging a historical version

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 69

Repo
User Guide 2 New Version (Recommended)

You can also tag a historical version by running the git log command to
obtain the commit ID of the historical version. The following uses an

annotated tag as an example:
git log # The historical commit information is displayed. Obtain the commit ID (only the
first several digits are required), as shown in the following figure. Press q to return.

Author:

Date:

git tag -a historyTag -m "Tag a historical version." 6a5b7c8db # Add tag historyTag to the
historical version whose commit ID starts with 6a5b7c8db, and the message is "Tag a historical
version.".

(1] NOTE

e If no command output is displayed, the tag is successfully created. If the command
output is displayed, indicating that the tag name already exists (as shown in the
following figure), change the tag name and perform the operation again.

e One commit can have multiple tags with unique names, as shown in the following
figure.

e Viewing tags in the local repository

You can list all tag names in the current repository and add parameters to

filter tags when using them.
git tag

e Viewing details about a specified tag
git show <name_of _the_desired_tag>

Example:

Display the details about myTag1 and the commit information. The following
shows an example command output:
git show myTag1

g: myTagl)

fix a bug

diff --git a/file0l b/file0l
index e0afObd..b3b2032 100644
--- a/fi1le0l
+++ b/file0l

e Pushing a local tag to the remote repository

- By default, tags are not pushed when you push files from the local
repository to the remote one. Tags are automatically synchronized when
you synchronize (clone or pull) content from the remote repository to the
local one. Therefore, if you want to share local tags with others in the
project, you need to run the following Git command separately.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 70

Repo
User Guide 2 New Version (Recommended)

git push <remote_repository address_or _alias> <name_of the_tag_to_be pushed> # Push
the specified tag to the remote repository.

Example:
Push the local tag myTag1 to the remote repository whose alias is origin.
git push origin myTag1

- Run the following command to push all new local tags to the remote

repository:
git push <remote_repository_address_or_alias> --tags

(11 NOTE

If you create a tag in the remote repository and a tag with the same name in the
local repository, the tag will fail to be pushed due to the conflict. In this case, you
need to delete one of the tags and push another tag again.

You can view all tags in the remote repository by referring to Managing Tags on
the Console.

e Deleting a local tag
git tag -d <name_of the tag_to_be deleted>

The following shows an example of deleting the local tag tag1.

~/Desktop,/01_developer

e Deleting a tag from the remote repository
Similar to tag creation, tag deletion also needs to be manually pushed.
git push <remote_repository_address_or_alias> :refs/tags/<name_of _the_tag to_be_deleted>

The following shows an example of deleting a tag.

git push HTTPSOrigin :refs/tags/666 # Delete the tag 666 from the remote repository whose
alias is HTTPSOrigin.

$ git push H

To https:
- [deleted

Obtaining a Historical Version Using Tags

If you want to view the code in a tagged version, you can check it out to the
working directory. The code can be edited but cannot be added or committed
because the checked-out version belongs only to a tag instead of a branch. You
can create a branch based on the working directory, modify the code on the
branch, and merge the branch into the master branch. The detailed steps are as
follows:

1. Check out a historical version using a tag.
git checkout V2.0.0 # Check out the version tagged with V2.0.0 to the working directory.

2. Create a branch based on the current working directory and switch to it.
git switch -c forFixVv2.0.0 # Create a branch named forFixV2.0.0 and switch to it.

fd /403

witched to a new branch 'forFixvz.0.0'

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 71

Repo
User Guide

2 New Version (Recommended)

(Optional) If the new branch is modified, commit the changes to the

repository of the branch.
git add . # Add the changes to the staging area of the new branch.
git commit -m "fix bug for V2.0.0" # Save the changes to the repository of the branch.

3 git add .

Switch to the master branch and merge the new branch (forFixV2.0.0 in this
example) to the master branch.

git checkout master # Switch to the master branch.
git merge forFixVv2.0.0 # Merge the changes based on the historical version into the master
branch.

(11 NOTE

The preceding commands are used to help you understand how to obtain a historical
version using a tag. Omit or add Git commands as required.

2.8.4.5 Managing Comparison

Click the Code and Comparison tabs of the repository details page, you can view
the code changes between branches or between tag versions through comparison.

Comparison
Select a branch or tag from each list or enter a commit id directly, then click Compare. The result shows the differences in the latest code on the left and the latest code on the right
Source branch Target Branch
¥ master ¥ Dev

Commits 3

Create Merge Request

Files Changed 2

-

AllChange Types v | Total files: 2 changed +2 Q Open File (Ctr+P) + ShowAll | = Settings

~ filed3 +1

v build.xml — porm.xm| +1

-888 +B modify in master B
[<ed [ded

(11 NOTE

After comparing branches, you can create a merge request as required.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 72

Repo

User Guide 2 New Version (Recommended)

2.8.5 Managing MRs

2.8.5.1 Managing MRs

CodeArts Repo supports development of multiple branches and establishes
configurable review rules for branch merging. When a developer initiates an MR,

some repository members can be selected to participate in code review to ensure
the correctness of the merged code.

Repository
administrator : : Developer

Start

G | |

: : . Reviewer/Approver :
Cunﬁgumlei!ége Tequest |8 ll Codeondevbranch o : Review & Approve :

Pass gate Merge code to target

. . . . branch
Bl Create merge request | Reviewer :

Code conflicts_Sha

Yes

Fix conflicts online or

(11 NOTE

When a merge request is created, reviewers, approvers, and mergers will be notified by
emails and .

Based on the security of the code repository, you are advised to understand and configure
the following functions before using merge requests:

e Merge Requests: You can set rules for merging branches.

e Protected Branches describes how to configure the merge permission on a protected

branch.

Merge Request List

On the Merge Requests tab page, you can view merge requests list page.

e You can switch between tabs to view MRs in different states.
e You can click a request to go to the details page.

You can view the brief information about the request, including the involved
branch, creation time, and creator.

e You can search for a request based on different conditions.

e You can click New in the upper left corner to create a request.

[EHome «>Code I3 Merge Requests 1 @ Reviews B Associated Work tems

By Last Created ~ L
Oper 1

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 73

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

Open: The request has entered the review or merge phase, and branches have not been
merged.

Merged: indicates that the request is approved and the branch is merged.
Closed: indicates that the request is canceled and the branch is not merged.
All: displays MRs in all states.

Creating a Merge Request

Assume that the administrator has set branch merge rules. To create an MR for a
develop branch, perform the following steps:

Step 1 Go to the details page of a target repository.
Step 2 Switch to the Merge Requests tab page.
Step 3 Click New and select the branch to be merged.

Create Merge Request

Select two different branches for update or creation.
Source branch Target Branch

@ testirepo - n @ testrepo

¥ Dev hd ¥ master

In the preceding figure, Dev (where the development task is completed) is merged
into the master branch.

(11 NOTE

The branch of a forked repository can be selected as the source branch.

Step 4 Click Next. The system checks whether the two branches are different.

e If there is no difference between the two, the system displays a message and
the MR cannot be created.

e If the branches are different, the following Create Merge Request page is
displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 74

Repo

User Guide 2 New Version (Recommended)

Create Merge Request

From Scrum007/repo Dev into Scrum007/repo master Change Branch
Tite Mergers
Add [WIP] to the title, fo prevent a Work In Progress (WIP) merge request from being merged before it is ready Reviewers
Description
Approvers
S« " HBEE » @ QB @ N Rz Settings

Delete source branch after merge

merge "Dev” into "master”

Squash

Create File Function_1,
Create File Function_2
5000
Tip
Directly edit a work item in the associated work item. You can also use keywords fix, fixed, resolve, resolved, and close pius a
number sign (#) in the description to associate with a work item. For example, fix #/R20230202018492 fix a bug.
To set work item status and transition, go to " automatic transition ", To set E2E tracing for integration, go to " E2E Settings "
sociated Work Hems
Cancel
Commits 2 Files Changed 2
Create File Function_1 [
Ib47E =
Created Apr 19, 2023 10:09:43 GMT+08:00
Create File Function_2 =
7111932 | &
Greated Apr 19, 2023 10:08:55 GMT+05:00

The lower part of the Create Merge Request page displays the file differences of
the two branches and the commit records of the source branch.

Step 5 Set the parameters according to the following table.

Table 2-8 Parameter description

Parameter Description

Change Click to return to the previous step and change the branch to be

Branch merged.

Title Enter the MR title.

Description | A default description is generated based on the merge and
commit messages of the source branch. You can modify the
description as required.

Associate You can choose to associate a merge action with a work item to

Work Items | automatically change the status of the work item.

Mergers Mergers have permissions to merge branches (by clicking the
merge button) when all approvers approve MRs and all
discussed issues are solved (or you can set the rule to allow
merge with issues unsolved). They can also close the MR.

Reviewers Specified to participate in the merge branch review and can
raise questions to the initiator.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 75

Repo

User Guide 2 New Version (Recommended)

Parameter Description

Approvers Appointed to participate in the merge branch review. You can
provide review comments (approved or rejected) or raise
questions to the initiator.

Delete You can choose whether to delete the source branch after
source merge. The preset status in the MR settings is initially used.
branch after

merge

Squash Enabling Squash merge keeps the history of the basic branch

clean, with meaningful commit messages, and can be easily
restored if necessary. For details, see Squash.

Step 6 Click Create Merge Request to submit the MR. The details page is displayed.

On the details page, merge rule statuses, mergers, reviewers, approvers, and
associated work items are displayed. You can view review comments, mark a
review comment as Unsolved, and view all activities related to the merge request.

New requirements are incorporated. Close

Comment ts clivities Comments resolved 0/0 | | Unresolved only | My comments only <Show Al

e Commits: You can view commit records of the source branch.

e Files Changed: You can view the changed content in an MR and filter the
change types such as addition, modification, deletion, and renaming.

e Pipeline: You can view the information about the pipeline.

--—-End

(11 NOTE

e When an MR is created, related members (reviewers and mergers) will be notified by
emails.

e If a single file contains 5000 different lines and there are over 100 different files, you are
advised to merge the branch using the client and then push it to CodeArts Repo.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 76

Repo
User Guide

2 New Version (Recommended)

Reviewing, Approving, and Merging MRs

Step 1
Step 2

Step 3

Step 4

Step 5

If you are notified of an MR as a reviewer, approver, or merger, perform the

following steps:

Go to the details page of a target repository.

Switch to the Merge Requests tab and click the name of the target merge request

to view details.

Review the target merge request.

Both the reviewer and approver can review the merge request and provide review
comments. If there is no comment, the reviewer can click Review Pass to
complete the review.

Review Gate Not enough reviewers. Contact these reviewers first

Approve the target merge request.

The reviewer can click Reject or Approve.

Approval Gate Not enough approvers. Contact these approvers first:

Pass the gate.

Table 2-9 Merge conditions

Merge Description

Condition

Code merge When the source branch code conflicts with the target branch

conflicts code, you need to resolve the conflict before proceeding to the
next step. For details about how to resolve the code conflict, see
Resolving Code Conflicts in an MR.

Review After the initiator resolves the reviews of all reviewers or

comment approvers, the gate is passed. For details see Detailed

gate Description of Review Comments Gate.

Pipeline gates

When the latest commit or pre-merged commit starts and
successfully executes the pipeline, the gate is passed. For details
see Detailed Description of Pipeline Gate.

E2E ticket After the combination request is associated with a work item,
number not the gate is passed. For details see Detailed Description of E2E
associated Ticket Number Association Gate.

Review gate When the number of reviewers reaches the minimum number,

the gate is passed. For details see Detailed Description of
Review Gate.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

77

Repo
User Guide 2 New Version (Recommended)

Merge Description
Condition

Approval gate | When the number of approvers reaches the minimum number,
the gate is passed. For details see Detailed Description of
Approval Gate.

Step 6 Merge the request.

After an initiator meets the preceding conditions, click Merger to merge the
request. Otherwise, click Close to close the request.

--—-End

Squash

Squash is to merge all change commit information of an MR into one and keep a
clean history. When you focus only on the current commit progress but not the
commit information, you can use squash merge. To better understand this
function, perform the following operations:

Step 1 Create a repository.
Name it repo.
Step 2 Create a branch.
Name it Dev.
Step 3 Submit the creation.
Consider creating a file as a commit.
Dev branch: Create two files and nhame them Function_1 and Function_2.
Step 4 Check the effect before Squash is enabled.

Find the Dev branch. Click the Code, Commits, and Commits tabs to view the
commit information.

& Home <> Code | I Merge Requests 0 (@ Reviews B Associated Work Items #1 Repository Statistics. = Activities & Members 13 Settings

[0.13 MB Files

| Commits | Graph | Dev v - Al v Q

2023-04-19 2 Commi

Create File Function_2 [=]

Step 5 Create and merge a request.

1. Set the source branch to Dev and target branch to master. Create a merge
request.

Dev branch: Name the merge request as Code Merge, select Squash, and
enter Configure Squash.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 78

Repo
User Guide

2 New Version (Recommended)

New function development|

2. Complete the review and approval.

Step 6 Check the effect after Squash is enabled.

| Configure Squash |

After the request is successfully merged, click the Code, Commits, and Commits
tabs, select the master branch. Compared with Step 4, the committed content has

been merged.

[Home $iMergeRequests 0 (GReviews [Associated Workltems o7 Repository Statistics = Activities & Members £ Settings

[£0.16 MB Fiies

| Commits | Graph | master

11 merge Dev into master (]

BRERTERS Created Apr 19,2023 101314 GNT=08:00

Al . Q

New function development =)

DRSRBARNE Created Apr 19,2023 10113113 GMT+08:00

1 Commi

initial commit (=]

d Mar 24, 2023 11:07:45 GMIT+08:00

--—-End

2.8.5.2 Resolving Code Conflicts in an MR

When using CodeArts Repo, you may encounter the situation where two members
in the same team modify a file at the same time. Code fails to be pushed to a
CodeArts Repo repository due to the code commit conflict. The following figure
shows a push failure caused by the file change conflict in the local and remote
repositories.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 79

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

e The returned messages vary depending on Git versions and compilers but have the
same meaning.

e The information similar to "push failure" and "another repository member" in the
returned message indicates that there is a commit conflict.

e Git automatically merges changes in different lines of the same file. A conflict occurs
only when the same line of the same file is modified (the current version of the local
repository is different from that of the remote repository).

e Conflicts may occur during branch merge. The locating method and solution are
basically the same as those for the conflict during the commit to the remote repository.
The following figure shows that a conflict occurs when the local branch1 is merged into
the master branch (due to the changes in the file01 file).

~/Desktop

file1
ts and then commit the result.

Resolving a Code Commit Conflict

To resolve a code commit conflict, pull the remote repository to the working
directory in the local repository. Git will merge the changes and display the
conflicting file content that cannot be merged. Then, modify the conflicting
content and push it to the remote repository again (by running the add, commit,
and push commands in sequence).

The following figure shows that there is a file merge conflict when you run the
pull command.

Modify the conflicting file carefully. If necessary, negotiate with the other member
to resolve the conflict and avoid overwriting the code of other members by
mistake.

(11 NOTE

git pull combines git fetch and git merge. The following describes the operations in detail.

git fetch origin master # Pull the latest content from the master branch of the remote host.
git merge FETCH_HEAD # Merge the latest content into the current branch.

During merge, a message indicating that the merge fails due to a conflict is displayed.

Example: Conflict Generation and Resolution

The following shows an example to help you understand how a conflict is
generated and resolved.

A company uses CodeArts Repo and Git to manage a project. A function (the
file01 file is modified) of the project is jointly developed by developer 1 (01_dev)
and developer 2 (02_dev). The two developers encounter the following situation.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 80

Repo
User Guide 2 New Version (Recommended)

1. file01 is stored in the remote repository. The following shows the file content.

fileO1
1 #FT11e81ARAAALMALALLA
2 ##fileB2BBEEEEEEEBEBE
3 #f11e83CCCCCCCCCCCC
4 ##f11284000000DDODDD
5|

2. 01_dev modifies the second line of file01 in the local repository and
successfully pushes the file to the remote repository. The following shows the
file content in the local and remote repositories of 01_dev.

file01
1 #Hf1le@1AAAALAALALLR
2 #Hmodify by 81 dew
3 #FHf1led3CCOCCCCCCCCl
4 ##f11e84DDDDDDDDDDDD
5 #% add one line by 81 dev

3. 02_dev also modifies the second line of file01 in the local repository. When
02_dev pushes the file to the remote repository, a conflict message is
displayed. The following shows the file content in the local repository of
02_dev, which is conflicting with that in the remote repository.

HHf1le0lAbbbbbbbbbbh
#H modify by 02 dev
HHf1le03CCCCC0000000
#Hf11e04DDDDDDDDDDDN
#1 add by 02 dev

4. 02_dev pulls the code in the remote repository to the local repository, detects
the conflict starting from the second line of the file, and immediately contacts
01_dev to resolve the conflict.

5. We find that they both modified the second line and added content to the
last line, as shown in the following figure. Git identifies the content starting
from the second line as a conflict.

BHf1le0l1ARANAANARRAN
{444 HEAD

B modify by 02 _dev modify by 02_dev
WHf11e03000CCCCCO000
##£11e040DDDDDDDDDDD
#H add by 02 _dev

Fmodify by ULl _dev modify by 01_dev
##£11e03CCCCCCCCCCCE
##£11e04DDDDDDDDDDDD _
add one line by 01 dev commit ID
Py afbdaac0I7230b21EE

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 81

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

Git displays the changes made by the two developers and separates them using

e The content between <<<<<<<HEAD and ======= indicates the changes of the
local repository in the conflicting lines.

e The content between ======= and >>>>>>> indicates the changes of the remote
repository in the conflicting lines, that is, the pulled content.

e The content after >>>>>>> is the commit ID.

e Delete <<<<<<<HEAD, =======, >>>>>>>, and commit ID when resolving the
conflict.

6. The two developers agree to retain all changes after discussion. After 02_dev
modifies the content, the modified and added lines are saved in the local
repository of 02_dev, as shown in the following figure.

HHTf11e0]AAAAAAAEESSS

HA modify by 02 _dev
HAmodify by 01 _dev
BHf11e03CCCC00000000
H#£11e0400000D0DDDDD

#A add by 02 dev

#A add one line by 01 dev

7. 02_dev pushes the merged changes to the remote repository (by running add,
commit, and push commands in sequence). The following shows the file
content in the remote repository after a successful push. The conflict is
resolved.

file01

#1181 0AAALAALAALA

modify by 82_dev
#modify by 81 dev
#f1le@3CCCCCOCCOCCC
#4#f11=8400DDDDD0ODDDDD

add by 82 dev

#% add one line by 81 dev

|9 N R N R

s R

(11 NOTE

In the preceding example, TXT files are used for demonstration. In the actual situation, the
conflict display varies in different text editors and Git plug-ins of programming tools.

Preventing a Conflict

Repository preprocessing before code development can prevent commit and
merge conflicts.

In Example: Conflict Generation and Resolution, 02_dev successfully resolves the
conflict in the commit to the remote repository. For 02_deyv, the latest code version
of the local repository is the same as that of the remote repository. For 01_dey,
version differences still exist between the local and remote repository. A conflict

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 82

Repo
User Guide 2 New Version (Recommended)

will occur when 01_dev pushes code to the local repository. The following
describes methods to resolve the conflict.

Method 1 (recommended for beginners):

If your local repository is not frequently updated, clone the remote repository to
the local repository to modify code locally, and commit the changes. This directly
resolves the version differences. However, if the repository is large and there are a
large number of update records, the clone process will be time-consuming.

Method 2:

If you modify the local repository every day, create a develop branch in the local
repository for code modification. When committing code to the remote repository,
switch to the master branch, pull the latest content of the master branch in the
remote repository to the local repository, merge the branches in the local
repository, and resolve the conflict. After the content is successfully merged into
the master branch, commit it to the remote repository.

Resolving a Merge Conflict on the Console

CodeArts Repo allows you to manage branches. The following simulates a
conflicting MR and describes how to resolve it.

Step 1 Create a repository.

Step 2 Create a file named file03 on the master branch in the repository. The initial
content is as follows:

master v -~
repo [file03
Q
[:3 file03 |55 Blame
com
1 AAA

N _ 2 EEBE
-.gitignore =2 3 cec
README.md
build. xm
file03

Step 3 Create a branch named branch007 based on the master branch.

The content in the master branch is the same as that in branch007. The following
describes how to make them different.

Step 4 In the master branch, modify file03 as shown in the following figure, and enter
the commit message modify in master.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 83

Repo

User Guide 2 New Version (Recommended)
master w
repo / file03
Q — —
fileD3 5 Blame (2 History
Com

1 AAA
— 2 B modify in master B
>-] .gitignore - s coc

M4 README.md
build.xm
[file03

Step 5 Switch to branch007, modify file03 as shown in the following figure, and enter

the commit message modify in branch007. Then the two branches are different,
that is, a conflict occurs.

branch007 v
repo / file03
Q — —
file03 5 Blame (2 History
com
1 AAL
— 2 modify in branch@e? BEE
>-] .gitignore = 3 cee

Mi README.md

build.xm

5 file03

(=Ll

Step 6 Create an MR to merge branch007 to the master branch. Click Create Merge
Request to submit the MR.

Merge request details page is displayed. You can also click the name of the merge
request in the merged requests list to access this page. Merge conflict: unsolved
displays on the details page. You are advised to Fix them online or offline.

New requirements are Incorporated.
1 R O

rom branch007 into master the source branch s 1 commit behind the target branc

Delails Cornini

p

You Keywords ", "fxed", 'resolve”, ‘resolved”, and “close" to associate the file with a work tem in the project. For example, "ix
#IR20230202018492 ix & buu

Merge Conditions

Fix them oniine or ofine.

mMIt Goes not pull Up the third-party piateform pipeine. For getalls, see

Step 7 Perform the following operation to resolve the conflict:
e Fix them online (recommended for small code volume)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 84

Repo

User Guide 2 New Version (Recommended)

a. Click Fix them online. The following page is displayed, showing the code
conflict.

T+03:00 From branch0D7 it master he source branch s 1 commit behind the target branch

= Hide All

w

To fix code conflicts online:

Commit Conflict Resolution Cancel

b. If the conflict cannot be resolved by overwriting the file, click to go to the
Manual Editing page, as shown in the following figure. The conflict
display format is similar to that in Example: Conflict Generation and

Resolution
< Details Conflicis. Files: Hide All
v X s m
T AAA B
2 ceeeee Fileos
3 medify in branchee7 BB
Y o
5 B modify in master B
6 »2r2p» fileod]
7 cec

Commit Message

To fix code conflicts online:

‘Commit Conflict Resolution Cancel

¢. Manually modify the code to resolve the conflict and commit the
changes.

(10 NOTE

Enter a commit message.

In the preceding figure, the following signs are used for conflict display and

separation: <<<<, >>>>, and ====. Delete the lines where the signs are located
when modifying code.

e offline (recommended for large-scale projects)

Click offline. The following page is displayed. Perform the operations as
prompted.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 85

Repo
User Guide 2 New Version (Recommended)

Switch, View, and Merge Branches Locally

Step 1 Update the code and switch to this MR source branch.

m

git fetch origin
zit checkout —b branch007 origin/branch007

I Step 2 Merge the target branch into the source branch.

git merge origin/master

Step 3 Manually resolve conflicts locally as prompted.

Step 4 Commit code to the remote end after conflicts are resolved.

git add .
git commit —m ' message’’

zit push origin branchi07

i step 5 Refresh the page and continue to review the MR.

aline e san

(11 NOTE

CodeArts Repo automatically generates Git commands based on your branch name. You
only need to copy the commands and run them in the local repository.

Step 8 After the conflict is resolved by using either of the preceding methods, you can
click Merge to merge branches. The system displays a message indicating that the
merge is successful.

You can also follow the instructions in Managing MRs.

Now, the content of the master and branch007 branches is the same. You can
switch between branches to check the content.

----End
2.8.5.3 Detailed Description of Review Comments Gate

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Configure the gate.

e Select Merge after all reviews are resolved and click Submit to save the
settings. The access control is enabled.

e Deselect Merge after all reviews are resolved and click Submit to save the
settings. The access control is closed.

--—-End

Effect of Gate Triggering

The reviewers or approvers can move the cursor to the code line in Files Changed
of the Merge Request and click the ~ icon to add review comments.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 86

Repo
User Guide 2 New Version (Recommended)

Alternatively, the reviewers or approvers can directly add review comments in
Details > Comments of the Merge Request.

e Review comment gate: passed: It is displayed when there is no review
comments in the merge request, or all review comments do not need to be
resolved or have been resolved.

G Review comment gate: passed

e Review comment gate: failed: It is displayed when the review comments in
the Merge request are not resolved.

Passing of the Gate

After you have resolved the issue raised in the review comments, you can switch
the status of the review comments from Unresolved to Resolved in Details >
Review Comments of the Merge Request. In this case, the status of the review
comments is displayed as Review comment gate: passed.

Comments Activities Comments resolved 0/0 Unresolved only My comments only <+Show All

Jun 25, 2023 11:32:26 GMT+08:00

Code writing is not standard

2.8.5.4 Detailed Description of Pipeline Gate
(11 NOTE

Pipeline gate supports only merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to set a branch policy for the target branch.

Step 3 Configure the gate.

e Select Enable pipeline gate under the policy and click OK to save the
settings. The gate is enabled.

e Deselect Enable pipeline gate under the policy and click OK to save the
settings. The gate is closed.

----End

Effect of Gate Triggering

e Merge into pipeline gate: passed: It is displayed when the pipeline is
successfully started after the latest commit or pre-merge commit operation is
performed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 87

Repo
User Guide

2 New Version (Recommended)

Merge into pipeline gate: passed Pipeline #189 success for 41cdbcd

e Merge into pipeline gate: failed: It is displayed when the repository has no
associated pipeline task or the latest commit or pre-merge commit fails to
start the pipeline.

Passing of the Gate

Step 1
Step 2

Step 3
Step 4

Step 5

Step 6
Step 7

Choose CICD > Pipeline.

Click Create Pipeline and enter the following information:
e Name: Enter a custom name.
e Pipeline Source: Select Repo.

e Repository: Select the target code repository for which you want to create a
merge request.

e Default Branch: Select the target branch of the merge request.
Click Next, select the target template as required, and click OK.

After the task is created, the system automatically switches to the Task
Orchestration tab page in the task details and switches to the Execution Plan tab

page.

Enable Merge Request Event Triggering and select the following trigger events
based on the site requirements:

e Create: triggered when an MR is created.

e Update: triggered when the content or setting of an MR is updated.

e Merge: triggered when an MR is merged. The code submission event will also
be triggered.

e Reopen: triggered when an MR is reopened.
Configure other information about the pipeline task and click Save.

Return to the CodeArts Repo and trigger the event selected in Execution Plan to
enable the repository to start the pipeline task.

--—-End

2.8.5.5 Detailed Description of E2E Ticket Number Association Gate

Opening/Closing the Gate

Step 1

Step 2

Go to the target repository and choose Settings > Policy Settings > Merge
Requests.
Configure the Gate.

e Select Must be associated with CodeArts Req and click Submit to save the
settings. The gate is enabled.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 88

Repo
User Guide 2 New Version (Recommended)

e Deselect Must be associated with CodeArts Req and click Submit to save
the settings. The gate is closed.

--—-End

Effect of Gate Triggering

e E2E ticket number: associated: It is displayed when the merge request is
successfully associated with the work item.

ﬂ EZE ticket number: associated /Z'

e E2E ticket number: not associated: It is displayed when the merge request
has no associated work item.

ﬂ EZE ticket number: not associated

Passing of the Gate

Step 1 Click the target project name to access the project.

Step 2 On the Work Items tab, click Create Work Item and choose Task from the drop-
down list. The page for creating a work item is displayed.

FPlans Work Items Sprints Statistics Reports

All - Backlog Bug + Create Worlk ltem All wor

Id Subje Epic
Feature

Story

Task

Bug

Step 3 Enter a title, for example, Sprint 1.

Retain the default values for other parameters. Click Save.

Plans ‘Work ltems Sprints Statistics Reports

Al ~ Backlog Bug + Create Work ltem Allwork items » Q. Tracker Epic | Fealure | Story | Task | Bug

Id Subject Closed On Status Assigned To

| 708635317 Iteration 1 New Administrators

Step 4 Choose Code > CodeArts Repo.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 89

Repo
User Guide 2 New Version (Recommended)

Step 5 Click a repository name to go to the target repository.

Step 6 Switch to the Merge Requests tab page and click the name of the target merge
request to access the target merge request.

Step 7 On the Details page, click the <+ icon next to Associated Work Items to search
for and select the target work item.

Step 8 Click OK. The E2E ticket number is associated.

--—-End

2.8.5.6 Detailed Description of Review Gate
(11 NOTE

The review gate supports only the merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Click Create to configure a branch policy for the target branch.

Step 3 Configure the Gate.

e Set Reviewers Required to a number except 0 and click OK to save the
settings. The gate is enabled.

e Set Reviewers Required to 0 and click OK to save the settings. The gate is
closed.

----End

Effect of Gate Triggering

e Review gate: passed: It is displayed when the number of reviewers who give
pass reaches the Reviewers Required.

Review gate: passed) Hide ~

Review Details
This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

1 person/1 person 1 person

e Review gate: failed: It is displayed when the number of reviewers who give
pass does not reach the Reviewers Required.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 90

Repo
User Guide

2 New Version (Recommended)

Review Details
This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

0 person/1 person 0 person

Passing of the Gate

After completing the review, the reviewer needs to choose Details > Review Gate
and click Pass. The review is passed. For details, see Setting Branch Policies.

2.8.5.7 Detailed Description of Approval Gate

(11 NOTE

The approve gate supports only the merge requests whose merge mechanism is Approval.

Opening/Closing the Gate

Step 1

Step 2
Step 3

Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Click Create to configure a branch policy for the target branch.

Configure the Gate.

e Set Approvals Required to a number except 0 and click OK to save the
settings. The gate is enabled.

e Set Approvals Required to 0 and click OK to save the settings. The gate is
closed.

--—-End

Effect of Gate Triggering

e Approval gate: passed: It is displayed when the number of approvers who
give pass reaches the Approvals Required.

Approval gate: passed) Hide ~

Approval Details
This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

1 person/1 person 1 person 0 person

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 91

Repo
User Guide 2 New Version (Recommended)

e Approal gate: failed: It is displayed when the number of approvers who give
pass does not reach the Approvals Required.

Approval Details
This MR has the following review rules. Modify Rules
Number of Reviewers

Minimum Reviewers

0 person/1 person 0 person 0 person

Passing of the Gate

After completing the approval, the approvers need to choose Details > Approval
Gate and click Pass. The approval is passed. For details, see Setting Branch
Policies.

2.8.6 Viewing Review Records of a Repository

On the Reviews tab page of the repository details page, you can view the review
information of the repository from MRs and commits. You can filter records based
on the filter criteria.

Table 2-10 Review record parameters

Parameter Description

Status Review records are classified into three statuses: Unresolved,
Resolved, and Resolve Not Needed.

Review Comment provided by the reviewer

comment

Approver Reviewer who provides the review comment

Review date Date when the reviewer submits the review comments
Assign to Assign the task to the default or specified personnel.

Adding Comments on the Reviews for MR Tab

Go to the details page of the target merge request and add review comments at
the bottom of the page.

Comments Activities Comments resolved 0/1 Unresolved only My comments only <-Show All

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 92

Repo
User Guide 2 New Version (Recommended)

Adding Comments on the Reviews for Commit Tab

Method 1: In the code file, click “J next to a line of code to add review

comments.
7 <property name="jar. dir" value="${build.dir}/jar"/>
~ Template o Reviewers ¥
S 2 HB=EE®» @ (@B I Preview

I Severity ©: Assigned to:

Cancel

Method 2: On the Commits tab, click a commit to switch to the comment page
and add review comments.

[Home) Merge Requests 1 (RReviews [Associated WorkItems 1] Repository Statistics = Activities 2 Members &} Settings

[%10.18 MB Files P 3Banches ©0Tags) Comparison

initial commit 2900125 @

Repo committed at Mar 24, 2023 11:07:45 GMT+08:00 P master

initial commit

Files Changed | Comments

2.8.7 Viewing Associated Work Items

2.8.7.1 Introduction

Work item is used to track work content in CodeArts Req. A work item usually has
a unique ID and a description. It can be a requirement, bug, or task. In CodeArts
Req, work item is a work content list that supports GUI-based management.

You can use the following associations and configure E2E Tracing.

e Commit association
e Create a branch association.

You can select the target work item under Associated Work Items on the
page for creating a branch.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 93

Repo

User Guide 2 New Version (Recommended)
X
Create Branch
* Based On
master w

* Branch Name

Description

Characters left: 2000 more characters.

Associated Work Items

3727 Iteration 2

e Merge request association

You can select the target work item under Associated Work Items on the
page for creating a merge request.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 94

Repo

User Guide 2 New Version (Recommended)
Create Merge Request
From 'SU[\H1UD7"prO Dev into SE?’LHT‘\UD?.‘TEDO master CTQ'\;%‘ Branch
Title Mergers
Add [WIP] to the title, to prevent a Work In Progress (WIP) merge request from being merged before it is ready
Deserintion Reviewers
o R
4 2 HB = E @ @ GB @ N 0 Preview
Approvers
merge “Dev” into "master”
Create File Function_1, P
Create File Function 2
Settings
Delete source branch after merge
Squash
5000
Tip
D\recnyemtawcrkltemm(ne associated work item. You can also use Keywcmsﬂx fixed, resolve, resolved, and close p\usa
number sign (#) in the description to associate with a work item. For example, fix #IR20230202018492 fix a bug.
To set work item status and transition, go to * automatic transition *, To set E2E tracing for integration, go to " E2E Settings "
Associated Work ltems
Iteration 2 Resc d
Cancel
L1 NOTE
CodeArts Req: a CodeArts service that provides R&D teams with efficient collaboration
services. You can create multiple Agile Scrum and Lean Kanban projects to manage
requirements, track bugs, create project Wiki, host documents in the cloud, analyze
statistics, and manage person-hours.
Preparations

Step 1 (Optional) Configure the commit transition status.
{10 NOTE

By default, the code commit status is configured as follows:

e The fix keyword is associated with the Resolved target state (enabled by default).

e The close keyword is associated with the Closed target state (disabled by default).

e The resolve keyword is associated with the Resolved target state (enabled by default).

In project settings, a project manager or another role with project setting permission can
set three commit message keywords (such as fix, close, and resolve) for different work
item types (Epic, Feature, Story, Task, and Bug). You can associate each keyword with a

target status (for example, Resolved or Closed). The work item status can also be
customized.

The following describes how to associate the close keyword to Rejected in a Task work
item.

1. Click the target project name to access the project.

2. Find the code commit status corresponding to a task, as shown in the
following figure.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 95

Repo
User Guide

2 New Version (Recommended)

3.

. - Statuses and Transitions
Wor
Epics > Statuses Transitions
Code)
Featues ’ These setings only apply to the task. Set automated transiion rules that match your working habits.
* CICD)
Stories >
A Change Status
)
il WD change Handler o ‘ o
Work item statuses are automatically changed based on code commit detals
Testing 3 Filds andTrples Work item handlers are automatically assigned based on the item status.
~ i Code Commit Detail Target Stafus Apply
Documentation ses and Transif
Statuses and Transiions (:) Change Staus
v Bugs 3 || Work item statuses are automatically changed based on code comit detals f Resed D
General Setfings Comman Fields tlose Closed D
Project Settings} Common Statuses
resolve Resolved ()

CloudTest Settings alher

Click the Target Status of close, set it to Rejected, and set Apply to @ .
The settings are automatically saved.

Then, you can use the close keyword in the commit message to change the
status of a Task work item to Rejected when committing local code.

Example:

git commit -m "close # <task_work_item_id> <commit_message>"

Step 2 Create a work item.

1.
2.

Click the target project name to access the project.

On the Work Items tab, click Create Work Item and choose Task from the
drop-down list. The page for creating a work item is displayed.

Plans Work Items Sprints Statistics Reports

All - Backlog Bug + Create Work Item All worl

Id Subje

Epic
Feature

Story

Task

Bug

Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 96

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

The work item management page is displayed. You can view the work item ID and the
status is New.

In this example:
- The ID of task01 is 708206208.
- The ID of task02 is 708206209.

On the project homepage, choose Work > Work Items to obtain a work item ID.

--—-End

2.8.7.2 Commit Association

With CodeArts Repo, you can associate each code commit with a work item of
CodeArts Req.

e Associated work items help developers accurately record tasks for fixing bugs
and developing new features.

e Associated work items allow project managers to view information such as
change committer and committed content involved in each requirement and
bug fixing task.

(10 NOTE

Commit: You can commit and save operations on files in the working directory, including
creating, editing, and deleting files. The following shows the commit command, in which
the -m parameter is mandatory and followed by the commit message.

git commit -m <commit_message>

On the CodeArts Repo console, a changed file can be saved only after you enter a
commit message. Each saving operation on the console is a commit, and the
mandatory message corresponds to the content after -m in the commit
command.

CodeArts Repo automatically associates work items with code by capturing
keywords from the commit message after -m. The most commonly used keyword
is fix, which is the recommended keyword in the prompt. The keyword must meet
the following format:

git commit -m "fix #<work_item_id> <commit_message>"

If a work item is successfully associated, the system automatically changes the
work item status based on the configured code commit status transition. By
default, the fix keyword sets the work item to the resolved state.

Example:
git commit -m "fix #123456 fixed this bug"

The work item 123456 is set to the resolved state after being pushed to CodeArts
Repo.

CodeArts Repo allows you to associate work items with code on the local PC or on
the console. The following describes the two methods.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 97

Repo
User Guide

2 New Version (Recommended)

(11 NOTE

e Only members of the same project and repository can associate work items with code.

e For the work item creator, specified modifier, or account (such as the project manager)
that has the permission to modify all work items in the project, their association
operations can change the work item status (new or resolved) and generate comment
records. In the association records, Transition successful is displayed in the Result
column. When you use an unauthorized account to perform operations, only association
records are generated. The work item status is not changed, no comment record is
generated, and Association successful is displayed in the Result column.

Associating a Work Item with Locally Committed Code

Step 1
Step 2

Step 3

Prepare the Git environment on the local PC. For details, see Installing and
Configuring Git. If you can access the repository (the corresponding remote
repository has been associated), perform the following operations:

Create a file on the local master branch and push the file to the remote repository.
During the push, use the fix keyword in -m to associate the work item task01
with code.

(11 NOTE

e In this example, the master branch is modified to simplify the process so that you can
quickly understand how to associate a work item with code committed on the local PC.

e Do not modify the master branch in the actual situation. It is recommended that you
create a branch for file operations, merge the changed file into the master branch, and
push the master branch to the remote repository. (This is a default rule and good habit.)

Right-click in the local repository folder to open the Git Bash client.

Check whether the remote repository address is successfully associated.
git remote -v # View the remote repository address associated with the local repository.

In the following figure, the underlined part indicates the remote repository address
associated with the local repository, and the information before the address is the
alias of the remote repository on the local PC.

~/Desktop/02_develop

If the associated repository is not the one you want or the repository is not
associated, clone the desired repository to the local PC.

After the clone is successful, run the git remote -v command again to verify the
association.

Check the repository status and switch to the master branch. (Skip this step for a
repository cloned in the previous step.)

git status # Check the repository status. You can view the current branch and whether there are
unsaved, uncommitted, and unpushed changes on the branch.

git checkout master # Switch to the master branch. Run the command when the current branch is not the
master branch.

Step 4 Create a file in the local repository folder and name the file fileFor708206208.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 98

Repo
User Guide 2 New Version (Recommended)

Step 5 Add the new file to the staging area using Git Bash.
git add fileFor708206208

Step 6 Commit the operation using Git Bash.

git commit -m "fix #708206208 Task01" #/ Use the fix keyword to associate task 01 whose ID is
708206208.

(11 NOTE
708206208 is the ID of taskO1.

Step 7 Push the committed content to the associated CodeArts Repo repository using Git
Bash.

git push

The command output varies depending on the repository structure. If 100% or
done is displayed for all steps, the push is successful. Push failures are usually
caused by invalid keys.

$ git push
Enumerating obje
Counting

Step 8 Verify the association result.

Go to the work item list and locate the work item whose ID is 708206208 to view
its details.
e The status is Resolved.

e An associated code commit record is added. You can click the commit ID to
view the details.

e A comment is automatically generated to describe the work item association.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 99

Repo
User Guide

2 New Version (Recommended)

#708206208 task01

Descripion Associaled (1) Person-Hour Defails ~ Operation History

~ Associate with Work Item(0)

~ Code Commit Records(1)

Want to know how to get started? Click here
Branch Commit Message Committed By Committed At

c3cfdbf9 - fix
#708206208 task01

master test Apr 24,2023 152855

v Associated Code Branches(0)

Tag @

Attachment ()

Click to select a file, of drag and drop a file

Comment

Message From CodeArts Repo:

test use command 'fix' to commit code then the work item status has autematically changed to 'Resolved’

® test @ Apr 24, 2023 15:28:55 GMT+08:00

--—-End

Status.

Resolved

* Assigned To

Module:

Sprint

Start Date

Due Date

Order.

* Priority

* Severity

Notify:

Parentld:

Domain

Show More

Associating Work Items with Code Committed on the Console

Step 1 Go to the repository details page.

Step 2 Create a file, enter a commit message starting with fix #708206209, and set

test

1

Middie

Minor

other parameters as required. The following figure shows an example.

Create File
Task02
1 <project xnlns="htto: /& R /PON/4.0.0" xnlns:xsi="http://
2 <nodelVersion>4.9.8</mo
3 <groupld>YEBABSRIRTo </ groupTd>
4 <artifactld>javaMavendenod/artifactld>
5 <packaging>jar</packaging>

8

<version>1.8¢/version>
<name>maven_deno</name>

<wrlyhttp: //EERREREER R ora </ur 1>

9 <dependencies>
10 <dependency>
1 <groupTd>junit</groupId>
12 <artifactId>junit</artifactld>
13 <version>3.8.1¢/version>
1 <scopestest</scape>
15 </dependency>
16 </dependencies>
Comit Message
fix #708206209 task02| Tip

Empty file (no template)

B instance” xsi:schemalocation="http:/ &

“You can use keywords "fix", "fixed", "resolve", "resolved", and "close" to associate

You can add 1978 more characters,

“ cancel

(11 NOTE

Step 3 Click OK. The system performs the following operations on the CodeArts Repo

708206209 is the ID of task02.

repository:

in the project. For example, “fix #IR20230202018492 fix a bug.

the file with a work item

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co.,

Ltd.

100

Repo
User Guide

2 New Version (Recommended)

Writes content to the new file.
git add .
git commit -m "fix #708206209 Task02"

That is, the system commits the new file and associates it with the task02 work
item using the fix keyword in the -m parameter.

Step 4 \Verify the association.

View the task02 work item.

The status is Resolved.

An associated code commit record is added. You can click the commit ID to
view the details.

A comment is automatically generated to describe the work item association.

171 P X
#708206209 task01
Description ~ Associated (1) Person-Hour Details ~ Operation Histon
Status: Resolved
~ Associate with Work Item(0)
* Assigned To test
~ Code Commit Records(1)
Module:
Want to know how to get started? Click here Sprint
Branch Commit Message Committed By Committed At Start Date:
c3cfdbf9 - fix Due Date
master test Apr 24, 2023 15:28:55
#708206209 tasko1
Order 1
* Priorit Middle
~ Associated Code Branches(0)
Severi Minor
Tag @ Notity
Parentid:
Attachment)
Domain:
Click to select a file, or drag and drop a file.
Show |
Comment
@ test @ Apr 24, 2023 15:28:55 GMT+08.00
Message From CodeArts Repo:
test use command ‘fix' to commit code then the work item status has automatically changed to 'Resolved'

--—-End

2.8.8 Viewing Repository Statistics

On the Repository Statistics tab page in the repository details, you can view the
following repository statistics:

Repository summary: Displays the Git repository capacity, LFS capacity, and
the number of branches, tags, repository members, and commits. You can
select a branch, and the statistical scope of commit trend, contributors, and
commit overview will be changed, but the repository summary will not be
affected.

Languages: displays the distribution of each language in the current branch of
the repository.

Commit trend: displays the commit distribution of a branch in the repository.

Contributors: collects statistics on the contribution of code committers in a
branch (number of commits and number of code lines).

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 101

Repo

User Guide 2 New Version (Recommended)
e Commit overview: collects statistics on code commits by different dimensions
(weekly, daily, and hourly).
{11 NOTE

e The repository administrator can trigger code contribution statistics and language ratio
statistics.

e Due to resource restrictions, statistics can be collected for each repository three times a
day.

e FEach user can collect statistics for 500 times a day.

e After the statistics are complete, the number of added and deleted code lines of each
user is displayed before the deadline.

e Commits (an operation that combines two or more historical development records) of
the merge node are not counted.

pOode [iMergeRequests 1 GiReviews B Assoc fems ¢ Repostory Sttistcs = Actvites & Members (¥ Settngs

Contributors

Commit Overview CommitActviy Dy Week Hor 200307

1041 (2020106 - 20230506) S

2.8.9 Viewing Activities

Access a repository and click the Activities tab page to view all activities of the
current repository.

All: This tab displays all operation records of the repository.

Push: displays all push operation records of the repository, such as code push
and branch creation and deletion.

Merge Request: displays the operation records of all merge requests in the
repository. You can click the sequence number of a merge request to view
details, such as creating, closing, re-opening, and merging a merge request.

Review: This tab displays all review comments of the repository. You can click
the commit nID to view details such as adding or deleting comments.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 102

Repo
User Guide 2 New Version (Recommended)

e Member: displays the management records of all members in the repository,
for example, adding or removing members and editing member permissions.

(1 NOTE

e The displayed information includes the operator, operation content, and operation time.

e You can specify search criteria, such as the time range and operator, to filter and query
data.

2.8.10 Managing Repository Members

2.8.10.1 IAM Users, Project Members, and Repository Members

Repository members come from project members of the project to which the
repository belongs. Project members mainly come from |IAM users of tenants. In
addition to the tenant to which the project creator belongs, IAM accounts of other
tenants can be invited to join the project. The following figure shows the
relationships between IAM users, project members, and repository members.

IAM user group of account 1

Members of project A in account 1

Repository members of project A in account 1

IAM user group of account 2 IAM user group of account 3 IAM user group of account n

Table 2-11 Mapping between project roles and repository roles

Project Role Repository Role

Project manager Administrator

Developer Developer

Test manager Viewer

Tester

Participant

Viewer

O&M manager

Custom role The repository role can be set as a
committer, developer, or viewer by a project
creator.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 103

Repo
User Guide

2 New Version (Recommended)

2.8.10.2 Configuring Member Management

You can manage repository members on the Members tab page. Only the
repository creator (owner) and administrator can manage repository members.
Other members can only view the repository member list. The following procedure
shows how to configure member management.

(11 NOTE

Currently, CodeArts Repo only allows you to import project members as repository
members. For details about how to add project members or modify project member roles,
see Member Management.

Automatically Synchronizing Project Members to the Repository

Configure Member Role Synchronization to synchronize project roles to the
repository. For details about the synchronization policies, see Table 2-12.

Repository Members Pending Mcmbers

Member Role Synchronization

B -

Allow developers o access the repository Allow viewers 1o access the repository

Project Memher Role

Table 2-12 Member role synchronization

Item Project Role Repositor | Allowed Operation
y Role
—_ Project manager Administr | ——
ator
Allow User-defined Committe | e Set the role as a
developers project role r committer.
to access the | (Committer e Set the role as a developer
repository permission) .
e Set the role as a viewer.
e Remove the member.
Developer Developer | o Set the role as an
administrator.
e Settherole as a
committer.
e Set the role as a viewer.
e Remove the member.
Custom role e Set the role as a developer
(developer e Set the role as a viewer.
permission)
e Remove the member.
Allow Test manager Viewer Remove the member.
viewers to
access the Tester
repository

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00026.html

Repo

User Guide 2 New Version (Recommended)
Item Project Role Repositor | Allowed Operation
y Role
Participant
Viewer

Custom role
(viewer
permission)

(1 NOTE

e By default, a project manager is the repository administrator. If you want to move the
project manager out of the repository, you need to adjust the role of the project
manager in the project settings.

e If you select a policy in Member Role Synchronization, related users added to the
project are automatically synchronized to the repository.

e If you deselect policies in Member Role Synchronization and click Synchronize, related
members will be removed immediately.

e On the repository list page, you can select Synchronize Roles to modify the repository
role mapped from a custom project role as a project creator.

A, Synchronize Roles

Follows Operation

Manually Adding Project Members to the Repository

NOTICE

Manually configured repository members will be overwritten by Automatically
Synchronizing Project Members to the Repository. You are advised to use either
of the two functions.

Click Add Member. On the displayed dialog box, select a member from the
member list of the corresponding project and add the member to the repository. A
default repository role is assigned to the member based on the project role. For
details about the role mapping, see the following table.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 105

Repo
User Guide

2 New Version (Recommended)

Table 2-13 Mapping between project roles and repository roles

Project Role

Repository Role

Allowed Operation

Project manager

Administrator
(default)

e Set the role as a committer.
e Set the role as a developer.

Developer

e Set the role as an administrator.
e Set the role as a committer.
e Remove the member.

Developer

Administrator

e Set the role as a committer.
e Set the role as a developer.

Developer e Set the role as an administrator.
(default) e Set the role as a committer.

e Set the role as a viewer.

e Remove the member.
Viewer e Set the role as a committer.

e Set the role as a developer.
e Remove the member.

Test manager

Tester

Participant

Viewer

O&M manager

Viewer (default)

Remove the member.

Custom role

Committer e Set the role as a committer.
e Set the role as a developer.
e Set the role as a viewer.
e Remove the member.
Developer e Set the role as a developer.

e Set the role as a viewer.
e Remove the member.

Viewer (default)

Remove the member.

(11 NOTE

If the project-level member list is empty, the project does not have members other than the

repository creator. Add project members.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

106

Repo
User Guide

2 New Version (Recommended)

2.8.10.3 Repository Member Permissions

Repository Creation Permission

Table 2-14 Repository creation permission of project roles

Operation Project Manager | Developer Others
Create v v -
repositories
Repository Operation and Viewing Permission
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Code | Access v v oY v o|Y |-
code
online
Edit code | ¥ v v v X If a protected branch is set,
online permissions of this protected
branch are used instead.
Downloa | v v Y v o[V -
d code
online
Local v v Y v o[V
code
clone
Local v v v v X If a protected branch is set,
code permissions of this protected
push branch are used instead.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 107

Repo

User Guide 2 New Version (Recommended)
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Fork | Fork a v v Y v |V | When you select a project for
project the Fork repository, only the
projects for which you have
the project-level developer
permission or higher are
displayed.
Mem | Add a v v | x x | x |-
bers member
Edit a v v x X X -
member
Remove |V v o | x x |x |-
a
member
Approve |« v | x x |[x |-
a
member
View a v v Y v |V o|-
member
MR Create v v oY v o x |-
an MR
View an |V v Y v |V o|-
MR

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 108

Repo
User Guide

2 New Version (Recommended)

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Merge v v Y X x | 1. If a protected branch is
an MR set, permissions of this
protected branch are used
instead.
2. Developers cannot merge
MRs by default. MRs can
be merged by developers
only when the target
branch is set as a
protected branch and
developers have MR
permissions.
Edit an v v v X x 1. The MR creator can
MR perform this operation,
(Open) but the MR creator must
be a developer or role
Close an | VoY X with higher permissions.
MR 2. The + role can operate all
Re-open |V Vv Vv x x MRs, including MRs
an MR created by others and MRs
created by yourself.
Edit a X X x X X -
merged
MR
(Merged)

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 109

Repo
User Guide

2 New Version (Recommended)

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r
Cherry- v v Y v | x | Atemporary branch
pick an containing cherry-pick is
MR automatically generated. The
(generat cherry pick operation fails in
e an MR) the following scenarios:

1. If all branches are
protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

2. If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

Revert v v Y v | x | Atemporary branch

an MR containing revert is

(generat automatically generated. The
e an MR) revert operation fails in the

following scenarios:

1.

If all branches are
protected branches and
the operator does not
have the permission to
create a branch (push),
the operation fails.

If the branch policy is
configured and the
temporary branch does
not meet the policy, the
operation fails.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

110

Repo
User Guide

2 New Version (Recommended)

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Cherry- v v Y v | x | If a protected branch is set,
pick an permissions of this protected
MR branch are used instead.
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)
Revert v v Y v oo x
MR
(No MR
is
generate
d, and
new
code is
directly
merged
into the
related
branch.)

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 111

Repo
User Guide

2 New Version (Recommended)

Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Delete v v Y v | x . The source branch can be
the deleted only when MR is
source performed between
branch repository branches and
the source branch is not
protected.

. If the Fork repository has
committed an MR to the
source repository, the
source branch of the
source repository cannot
be deleted.

. A protected source branch
cannot be deleted.

Vote v v Y v oY . All repository members

scoring can score the MR even if

in the they are not configured as

scoring scorers of this MR.

mechanis . By default, developers and

m roles with lower
permissions can score
from -1 to 1, and
committers and roles with
higher permissions can
score from -2 to 2.

Review v v Y v |V | Only MR reviewers can

in the review the MR.

approval

mechanis

m

Approve |V v Y x | x | Only MR approvers and v

in the roles can review MRs.

approval

mechanis

m

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

112

Repo

User Guide 2 New Version (Recommended)
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Delete X X X X X No one can delete an MR.
an MR
Score | Score v v |V v | x | The repository configuration
prevails:

1. If Developers and above
is selected, developers or
users with higher
permissions can give a
score.

2. If Committers and above
is selected, committer or
or users with higher
permissions can give a
score.

Revie | Add a v v Y v | +¥ | You can add a review for
ws review which you have permission to
view MR.
Edit a X X X x X Only reviewers can edit their
review reviews.
Delete a | x X x x X
review
Reply a v v oY v | Y | You can reply a review for
review which you have permission to
view.
View a v v Y v | v | You can view all reviews for
review which you have permission to
view MR.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 113

Repo

User Guide 2 New Version (Recommended)
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Resolve a | v v Y X x | 1. When the severity of
review review is suggestion: MR
creator, reviewer,
committer, and roles with
higher permission can
operate.

2. When the severity of
review is minor, major or
fatal: Reviewer, committer,
and roles with higher
permission can operate,
but the MR creator (Even
if with supported roles)
cannot operate.

Pipeli | Trigger v v Y v | x | The pipeline execution plan is
ne an MR enabled.
pipeline
Branc | Createa |V v Y v | x | 1. If Developers cannot
hes branch create branches is
) selected, this operation
Edit a v VoY Vo x cannot be performed.
branch .

2. If Committers cannot
create branches is
selected, this operation
cannot be performed.

Deletea |V v Y v | x | A protected branch cannot be

branch deleted by any user.

View a v v Y v o[V -

branch

Tag Createa |V v oY v | x | If Developers cannot create

tag tags is selected, this
operation cannot be
performed.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 114

Repo

User Guide 2 New Version (Recommended)
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew
r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Deletea |V v oo x X x | A protected tag cannot be
tag deleted by any user.
View a v v Y v |V |-
tag
Settin | View v v oo x x |x |-
gs settings
Edit v v X X X -
settings
Rename |V X X X x |-
a
repositor
y
Transfer | v x x x x -
repositor
y
ownershi
P
Repos | Createa |V v oY v oIx |-
itory | repositor
y
Deletea |+ v x x x -
repositor
y
Display a | v v Y v | v | The repository is displayed for
repositor all repository members.
y
Activi | View v v Y v |V o|-
ties updates

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 115

Repo

User Guide 2 New Version (Recommended)
Type | Operatio | Cre | Ad | Com | De | Vi | Remarks
n ato | mi | mitte | vel | ew

r nis | r op | er
tra er | (R
tor ep
osi
tor
y
M
e
m
be
r)
Assoc | View v v v v VYo
iated | associate
work | d work
items | items
Hom | View v v v v Vo -
e home
Repos | View the |V v oY v o|Y |-
itory | statistics
:itfstls Update v v v v | x -
the
statistics
SSH View and | v v v v Vo -
and edit
HTTP
settin
gs
IP View and | x x x x X The administrator can view
addre | edit and edit the information.
SS
white
list
{11 NOTE

For details about how to set a protected branch policy, see Protected Branches.

2.9 Configuring CodeArts Repo

2.9.1 General Settings

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 116

Repo
User Guide 2 New Version (Recommended)

2.9.1.1 Repository Information

To view and modify the repository information, choose Settings > General
Settings > Repository Information on the repository details page.

The settings take effect only for the repository configured.

Only repository administrators and owners can view this tab page and configure
webhooks.

Repository Description: remarks field when the template is open-source (public
example template). It is used to facilitate search.

Visibility
e Private: Only repository members can access and commit code.

e Public: Read-only for visitors and hidden from repo lists and search results.

e Public template: The repository will be shared as a template in the whole
site. Template Title and Author are mandatory

Repository Information

Repository Name

Repository Description

Visibility

QO Frivate Public Public template

Cnly Repository Members can access and commit code.

2.9.1.2 Notifications

CodeArts Repo Notifications

To set notifications, choose Settings > General Settings > Notifications on the
repository details page.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure notifications.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 117

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

If all notification types in the notification settings are disabled, the system sends an email
notification to the creator or administrator by default when you perform the following
operations:

e When a repository is created, an email notification is sent to the creator or
administrator by default.

e When a non-repository member applies to join a repository, an email notification is sent
to the creator by default.

e When a repository is frozen or closed, an email notification is sent to the creator or
administrator by default.

e Delete a repository: You can manually configure the system to send email
notifications to the repository owner, administrator, committer, developer, and
viewer.

e Capacity warning: By default, this parameter is not enabled. You can
manually set the capacity warning threshold as required. When the capacity
of a single repository exceeds the threshold, the system emails the repository
owner, administrators, committers, and developers. The warning email is sent
only once unless you update the warning settings.

e Open a merge request: Pushed states of the merge request (including create
and re-open) to specified roles by email. By default, email notification is
disabled. You can enable it to send email notifications to scorers, approvers,
reviewers, and mergers.

e Update a merge request: Pushes code updates of the branch associated with
the merge request to specified roles by email. By default, the email
notification is disabled. You can enable it to send email notifications to
scorers, approvers, or reviewers.

e Merge a request: By default, an email notification is sent to the MR creator.
You can determine whether to also send an email notification to the merger.

e Review a merge request: By default, an email notification is sent to the MR
creator. You can also disable the notification.

e Approve a merge request: By default, an email notification is sent to the MR
creator. You can manually set not to send the notification.

e Create a review comment: By default, an email notification is sent to the MR
creator. You can also disable the notification.

e Resolve a review comment: By default, an email notification will be sent to
the MR creator. You can manually set not to send the notification.

(11 NOTE

If no email notification is received, go to Notifications to check whether the email and
email notifications are enabled.

If you want to know repository changes in other ways than emails, you can choose Service
Integration > Webhooks and customize notifications in your own system (third-party
system).

Configuring Messages for CodeArts

CodeArts provides configurable notifications. On the CodeArts homepage, click
your username in the upper right corner. In the dialog box that is displayed, click
This Account Settings to configure notifications.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 118

Repo
User Guide 2 New Version (Recommended)

e ® cn

Preferences -
Theme&Layolt

1D ® 2

This Account
Settings

ey

Uiser Center Billing Center

Choose General Settings> Notifications. Enable or disable and email
notifications, and change the email address for receiving notifications.

You can also set a Do-Not-Disturb (DND) period so that you will not receive email
notifications within the specified period.

Notifications

Do-Not-Disturb

After do-not-disturb (DND) is enabled, you will not receive email notifications within the specified period.

Email Notifications
Email Address for Receiving Notifications: Edit Setlings
© Enable

Disable

2.9.2 Repository Management

2.9.2.1 Repositories

To configure repository settings, you can choose Settings > Repository
Management > Repository Settings on the repository details page.

The default branch is the branch selected by default when you enter the current
repository and is also the default target branch when you create a merge request
(MR). When a repository is created, the master branch is used as the default
branch and can be manually adjusted at any time.

The settings take effect only for the repository configured.

Only the repository administrator and repository owner can view this page and
have the setting permission. After the setting is complete, you can click Commits
for the setting to take effect.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 119

Repo
User Guide 2 New Version (Recommended)

Table 2-15 Parameter description

Parameter Description

Do not fork a repo. This parameter is not selected by default. If this
parameter is selected, all users cannot fork the
repository.

Developers cannot This parameter is not selected by default. If this

create branches. parameter is selected, the developer role cannot create
branches.
NOTE

A whitelist can be set to prevent developers who are not in
the whitelist from creating branches.

Developers cannot This parameter is not selected by default. If this

create tags. parameter is selected, the developer role cannot create
tags.

Committers cannot This parameter is not selected by default. If this

create branches parameter is selected, the committer role cannot create
branches.

Pre-merge By default, this option is not selected. After this option

is selected, the server automatically generates MR pre-
merging code. Compared with running commands on
the client, this operation is more efficient and simple,
and the build result is more accurate. This option
applies to scenarios that have strict requirements on
real-time build.

Branch name rule e The value cannot exceed 200 bytes.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (M),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
quotation marks ('), quotation marks ("), and
vertical bars (]). It cannot end with ./ or .lock.

e The name of a new branch cannot be the same as
that of an existing branch or tag.

Tag name rule e The value cannot exceed 200 bytes.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special
characters such as brackets ([), backward slashes
(\), angle brackets (<), tildes (~), circumflexes (M),
colons (:), question marks (?), asterisks (*),
exclamation marks (!), parentheses (()) , single
quotation marks ('), quotation marks ("), and
vertical bars (]). It cannot end with ./ or .lock.

e The name of a new tag cannot be the same as that
of an existing branch or tag.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 120

Repo
User Guide

2 New Version (Recommended)

(1 NOTE

e Byte: a group of adjacent binary digits. It is an important data unit of computers and is
usually represented by B. 1 B = 8 bits.

e Character: a letter, digit, or another symbol that represents data and information.

Configuring MR Pre-combination

2.9.2.2 Space

After an MR is created, you can customize the scripts for downloading plug-ins
such as WebHook and CodeArts Pipeline. That is, you can control the downloaded
code content.

e If you select MR Pre-merge, the server will generate a hidden branch,
indicating that the MR code has been merged. You can directly download the
code that already exists in the hidden branch.

e If MR Pre-merge is not selected, you need to perform pre-merge on the
client. That is, download the code of the MR source branch and MR target
branch and perform pre-merge on the build executor.

Command

The pre-merge command on the server is as follows:

git init
git remote add origin ${repo_url clone/download address}
git fetch origin +refs/merge-requests/${repo_MR_iid}/merge:refs/${repo_MR_iid}merge

If this option is not selected, you can perform the pre-merge operation on the
client and create a clean working directory on the local host. The command is as
follows:

git init

git remote add origin ${repo_url clone/download address}

git fetch origin +refs/heads/${repoTargetBranch}.refs/remotes/origin/${repoTargetBranch}

git checkout ${repoTargetBranch}

git fetch origin +refs/merge-requests/${repo_MR_iid}/head:refs/remotes/origin/${repo_MR_iid}/head
git merge refs/remotes/origin/${repo_MR _iid}/head --no-edit

Advantages

In scenarios that have high requirements on real-time build, for example, one MR
may start the build of dozens or hundreds of servers, and the pre-merging result
generated by the local or client may be inconsistent with that generated by the
server. As a result, the build code cannot be obtained accurately and the build
result is inaccurate. Pre-merging on the server can solve this problem in real time.
In addition, the script building command is simpler, and developers or CIEs can
better use it.

Freeing

To enable space freeing, you can choose Settings > Repository Management >
Space Freeing on the repository details page.

With space freeing, you can free up storage space to increase the read and write
speed for the current repository by running background clean-up tasks, including

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 121

Repo
User Guide 2 New Version (Recommended)

compressing files and removing unused objects. Space freeing is similar to the
garbage collect (gc) function in Git.

Only the repository administrators and owners can view this tab page and
configure space freeing.

(11 NOTE

It is recommended that you perform this operation once every month.

2.9.2.3 Synchronization

To configure repository settings, you can choose Settings > Repository
Management > Sync Settings on the repository details page.

This function is used to synchronize the customized settings of the current
repository to other repositories. This function supports cross-project
synchronization but does not support cross-region synchronization.

This function is used for a repository forked based on the repository because the
settings are not automatically copied during forking. For details, see Forking a
Repository

Only the repository administrators and owners can view this tab page and
configure copy repository settings.

Sync Settings

Repository To Be Synced

Settings To Be Synced Select All

Repository Management Repository Settings

Policy Settings Protected branch Commit Rules
Service Integration Webhooks

Security Management IP Address Whitelist

Adding a Synchronization Repository

Step 1 Click Add Repository. In the dialog box that is displayed, select the target
repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 122

Repo
User Guide

2 New Version (Recommended)

Select Repository Settings
W MsM229 - Q
MSh-fest MSM-229
b M3M-229
Bl MSM-229
gt
B M3M-229
8 MS-1208 MSM-229
oy
Selected 0 n
“ Cancel

Step 2 Click OK. The repository synchronization is complete.

--—-End

(11 NOTE

Common Failure Causes
e Failed to synchronize Commit Rules: No commit rules are set for the source repository.

e Failed to synchronize protected branches: The branch names of the source repository
and target repository are different.

2.9.2.4 Submodules

Background

A submodule is a Git tool used to manage shared repositories. It allows you to
embed a shared repository as a subdirectory in a repository. You can isolate and
reuse repositories, and pull latest changes from or push commits to shared
repositories.

You may want to use project B (a third party repository, or a repository developed
by yourself for multiple parent projects) in project A, and use them as two
separate projects. Submodules allow you to clone a Git repository as a
subdirectory into another Git repository while keeping commits separate.

The submodules are recorded in a file named .gitmodules, which records the
information about the submodules.

[submodule "module_name"] # Submodule name
path = file_path # File path of the submodule in the current repository (parent repository).
url = repo_url # Remote repository IP address of the submodule (sub-repository).

In this case, the source code in the file_path directory is obtained from repo_url.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 123

Repo
User Guide 2 New Version (Recommended)

Using the Console
e Creating a submodule
- Entry 1:
You can add a submodule to a folder in the repository file list.

Click : and select Create Submodule, as shown in the following figure.

[Home </» Code i) Merge Requests 0 (: Rey

[0 MB Files >0 Commits ¥ 0 Branches > 0 Tags
master W
repo / + Cre:
Q
repo
Src D
>] .gitignore (3 Create File
It
Mi README.md [z Create Directory
pom.xml {2 Create Submodule P
& Upload File n
- Entry 2

You can create a submodule on the Code tab page

, + Create w ,
Click and select Create Submodule, as shown in the

following figure.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 124

Repo
User Guide 2 New Version (Recommended)

[E Home <I» Code 1) Merge Requests 0 (% Reviews [Associate

0 MB Files o0 Commits ¥ 0 Branches > 0Tags T, Comparison
master v
repo /|| + Create A|
Q

Ie {1 Create File
src —

[3 Create Directory

b3 gitignore B {} Create Submodule
Mi README.md A Upload File
pom xml '
- Entry 3:

You can create a submodule in the repository settings.

Choose Settings > Repository Management > Submodules > Create
Submodule.

- Remarks:
You can use one of the preceding methods to create a submodule.

Configure the following parameters and click OK.

Table 2-16 Parameters of creating a sub-repository

Parame | Description
ter

Submod | Select a repository as the submodule.
ule

Submod | Select the target branch of the submodule to be
ule synchronized to the parent repository.
Branch

Submod | The storage path of the sub-repository in the parent
ule Path | repository. Use slashes (/) to separate levels.

Details | Remarks for creating a submodule. You can find the
operation in the file history. The value contains a maximum
of 2000 characters.

(11 NOTE

After the creation is complete, you can find the submodule (sub-repository) in
the corresponding directory of the repository file list. The icon on the left of the

corresponding file is 8.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 125

Repo
User Guide 2 New Version (Recommended)

e Viewing, synchronizing, and deleting a submodule

Choose Settings > Repository Management > Submodules. On the
displayed page, repository administrators can view, synchronize, and delete
submodules.

e Synchronizing deploy keys

If a submodule is added on the Git client, the repository administrator needs
to synchronize the deploy key of the parent repository to the submodule on
the Settings > Repository Management > Submodules page. In this way,
the submodule can also be pulled during the build of the parent repository.

Using the Git Client
Step 1 Add a submodule.

git submodule add <repo> [<dir>] [-b <branch>] [<path>]

Example:

git submodule add git@***.***.com:****/WEB-INF.git

Step 2 Pulling a repository that contains a submodule
git clone <repo> [<dir>] --recursive

Example:
git clone git@***.***.com:****/WEB-INF.git --recursive

Step 3 Update a submodule based on the latest remote commit
git submodule update --remote

Step 4 Push updates to a submodule.

git push --recurse-submodules=check

Step 5 Delete a submodule.

1. Delete the entry of a submodule from the .gitsubmodule file.
2. Delete the entry of a submodule from the .git/config file.

3. Run the following command to delete the folder of the submodule.
git rm --cached {submodule_path} # Replace {submodule_path} with your submodule path.

(10 NOTE

Omit the slash (/) at the end of the path.

For example, if your submodule is stored in the src/main/webapp/WEB-INF/
directory, run the following command:

git rm --cached src/main/webapp/WEB-INF

--—-End

2.9.2.5 Repository Backup

To configure remote backup, choose Settings > Repository Management >
Repository Backup on the repository details page.

The repository can be backed up in either of the following modes:

e Backup to Online Repository: Back up the repository to another region.

This mode imports a repository from a region to another region. For details,
see Importing an External Repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 126

Repo
User Guide 2 New Version (Recommended)

e Backup to Local PC: Back up the repository to your local PC.

You can use the HTTPS or SSH clone mode. The clone command is generated
as shown in the following figure. You only need to paste the command to the
local Git client and run it. (Ensure the repository connectivity.)

Only the repository administrators and owners can view this tab page and
have permissions.

Repository Backup

Backup to Online Repository

Target Region

Backup to Local PC

2.9.2.6 Repository Synchronization

The Repository Synchronization option is available only for repositories created
by Importing an External Repository.

To synchronize a repository, choose Settings > Repository Management > Sync
Settings on the repository details page.

Only repository administrators and owners can view this tab page and configure
the function.

You can click Synchronize Repository to resynchronize the default branch of the
source repository. If you have selected Schedule sync into repo before importing
external repositories, the Synchronize Repository switch is displayed on the
Repository Synchronization tab page, as shown in the following figure.

e When the Scheduled Synchronization of Image Repository function is
enabled, the image repository is read-only for you and code cannot be
submitted or uploaded. The image repository refreshes content every hour to
synchronize code generated 24 hours ago. For example, if you modify the
default branch of the source repository at 10:00 today, the modified content
will be synchronized to the image repository at 10:00 tomorrow.

e If you disable the Scheduled Synchronization of Image Repository function,
you can edit the image repository. This function is removed from the page
and cannot be restored.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 127

Repo
User Guide 2 New Version (Recommended)

Repository Synchronization

Source Repository:hitps. g

Source branch: All branches

Syne Branch: All branches

Synchronize Repository

Click to manually sync the code repository. Waming: The committed code may be replaced and lost after sync

Scheduled Synchronization of Image Repository

Enabled: The repository is read-only and code cannot be committed or uploaded. Disabled: The repository is writable, but the scheduled sync cannot be enabled again.

NOTICE

e The image repository takes effect only on the default branch. To update code of
other branches, manually change the default branch following instructions in
Repository Settings.

e |f the content of the source repository is synchronized to the current repository,
the code submitted by the current repository may be overwritten. As a result,
the code is lost.

2.9.3 Policy Settings

2.9.3.1 Protected Branches

To configure protected branches, you can choose Settings > Policy Settings >
Protected Branches on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure protected branches.

Functions of Protected Branches
e Ensure branch security and allow developers to use MRs to merge code.
e Prevent non-administrators from pushing codes.
e Prevent all forcibly push to this branch.
e Prevent anyone from deleting this branch.

(1 NOTE

When you create a repository, the repository automatically sets the default branch
(generally master) as the protection branch to ensure repository security.

After you set a protected branch, the protected branch cannot be used as the target branch
for code merging.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 128

Repo
User Guide 2 New Version (Recommended)

Editing Protected Branches

You can set a protected branch. The procedure is as follows:

e Click Create Protected Branch. In the Added Protected Branch dialog box,
select a branch from the drop-down list or manually enter a branch name or
wildcard character, select the corresponding permissions or assign permissions
to users, and click OK.

o Click Z to modify the configuration of the protected branch.

e (lick o to delete the protected branch.

Protected Branches

Administrator Committer Developer @) Whitelist members Q Create Protected Branch

Branch Name Allowed to Push Allowed to Merge Operation

e Configure the whitelist: To assign permissions to one or more members of an
unauthorized role, you can select Push and Merge under Members and click
the drop-down list to add the members to the trustlist.

Create Protected branch

* Branch

Administrator Committer Developer
Push m
Merge
Members
Fush
Merge
(O NOTE

e Only developers and users with permissions higher than developers have the Can push
and Can merge permissions.

e If Administrator, Committer, and Developer are selected for Can push, all these roles
have the permissions. In this case, you do not need to select Can push or Can merge
under Members.

e You can create, edit, and delete protected branches in batches.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 129

Repo
User Guide 2 New Version (Recommended)

2.9.3.2 Protected Tags

To configure protected tags, you can choose Settings > Policy Settings >
Protected Tags on the repository details page.

Only the repository administrators and owners can view this tab page and
configure protected tags.

You can set protected tags to prevent production tags or important tags from
being deleted. The procedure is as follows:

Click Create Protected Tag. In the Added Protected Tags dialog box, select a tag
from the To be protect tag drop-down list or create a wildcard, select No one,
Developers + Committer + Maintainers, or Maintainers from the Allowed to
create drop-down list, and click OK.

Tag Name Allowed to Create Operation

fersion1.0 Administrators

(0 NOTE

e When a developer, committer and administrator, or administrator is allowed to create
protected tags, or other members cannot create or delete the tags. If no one can create
protected tags, all members cannot create or delete the tags.

e Click O to delete protected tags.

2.9.3.3 Commit Rules

To configure commit rules, you can choose Settings > Policy Settings > Commit
Rules on the repository details page.

On the Commit Rules page, you can establish a series of code commit verification
and restriction rules to ensure code quality. The settings take effect only for the
configured repository.

Only the repository administrators and owners can view this tab page and
configure code commit rules.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 130

Repo
User Guide

2 New Version (Recommended)

Table 2-17 Parameters on the Commit Rules page

Parameter

Description

Reject unsigned
commits

Only signed commits can be pushed to the repository.
CodeArts Repo signature mode:

When performing online commit in CodeArts Repo, use the

following format to compile and submit information:
commit message # Enter the customized submission information.
This is a blank line.
Signed-off-by: User-defined signature # Enter the user-defined signature after
Signed-off-by:

Git client signature mode:

When running the commit command on the Git client, you
need to add the -s parameter.

git commit -s -m " <your commit message>"

You need to configure the signature and email address on
the client in advance.

Tags cannot be
deleted

After this option is selected, tags cannot be deleted on the
page or by running commands on the client.

Prevent
committing
secrets

Confidential files include ssh_server_rsa, id_rsa, and id_dsa.
For details, see Description of Confidential Files.

Prevent git
push -f

Indicates whether users can run the git push -f command on
the client to push code.

git push -f indicates that the current local code repository is
pushed to and overwrites the code in CodeArts Repo.

In general cases, you are not advised to use this command.

Creating a Commit Rule

The repository administrator and repository owner can create a commit rule for a
branch of the repository. Only one commit rule can be set for each branch.

Table 2-18 Parameters

Parameter

Description

Rule Name

This parameter is mandatory. The value contains a maximum
of 200 characters.

Branch

This parameter is mandatory. Select a branch from the drop-
down list or create a regular expression. This field supports a
maximum of 500 characters.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 131

https://support.huaweicloud.com/intl/en-us/codehub_faq/codehub_faq_0024.html

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

Commit rules

Parameters in this area are optional.

e Commit Message: This parameter is left empty by default,
indicating that the commit message is not verified, and any
parameter can be committed. This field supports a
maximum of 500 characters.

For example, you can set the format rule of the commit
message as follows:

TraceNo:((REQ[0-91{1,9})|(DTS[0-91{13})) (.\n|.\n)Author:.*(.[\n|.

\n) Description:.*

The following is a commit message that complies with the
rule:

TraceNo:DTS20220801156688 Author:cwx1094057 Description:testpushfile
The following is a commit message that does not comply
with the rule:

new files

e Negative Match: This parameter is left empty by default,
indicating that the commit information is not verified, and
any parameter can be committed. This field supports a
maximum of 500 characters.

For example, you can set the format rule of the commit
message as follows:

TraceNo:((REQ[0-91{1,9})|(DTS[0-91{13})) (.\n|.\n)Author:.*(.[\n|.

\n) Description:.*

e Commit author: This parameter is left empty by default,
indicating that the commit author is not verified, and any
parameter can be committed. This field supports a
maximum of 200 characters.

The commit author can run the git config -l command to
view the value of user.name and run the git config --
global user.name command to set the value of user.name.

Example:
Rules for setting the commit author: ([a-z][A-Z]{3}) ([0-9]{1,9})

e Commit author's email: This parameter is left empty by
default, indicating that the commit author email is not
verified, and any parameter can be committed. This field
supports a maximum of 200 characters.

The commit author can run the git config -l command to
view the value of user.email and run the git config --
global user.email command to set the email address.

Example:
Rules for setting the email of the commit author: @huawei.com$

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 132

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

Basic
Attributes

Parameters in this area are optional.

e File Name That Cannot Be Committed: This parameter is
left empty by default, indicating that the file name is not
verified, and any file can be committed. You are advised to
use standard regular expressions to match the file name. By
default, the file path is verified based on the file name rule.
This field supports a maximum of 2000 characters.
Example:

Set File Name That Cannot Be Committed: (\.jar|\.exe)$

e Each File Size (MB): The default value is 50, indicating that
the push is rejected if the size of the added or updated file
exceeds 50 MB. The administrator can change the value
from 0 to 200.

NOTE

When a repository is created, the maximum size of a single file in the
default submission rule (default) is 200 MB. When a repository is

created, the recommended maximum size of a single file in the default
submission rule is 50 MB.

Binary Rules

Parameters in this area are optional.

These parameters are not set by default, indicating that binary
files can be uploaded. The size of a single file cannot exceed
the upper limit. Allow changes to binary files, Repo File
Whitelist, and Privileged User take effect only when Do not
allow new binary files is selected. If you select Allow
changes to binary files, binary files in modifiable state are
not intercepted and can be directly uploaded. Binary files can
be deleted without binary check.

e Do not allow new binary files (privileged users
excepted)

e Allow changes to binary files (privileged users excepted)

e Binary file trustlist (files that can be directly imported to the
database. This field supports a maximum of 2000
characters.)

e Privileged users (privileged users can directly push all binary
files to the database. This field supports a maximum of
2000 characters.)

Effective Date

This parameter is optional.

Before being pushed, all commitments created after the date
specified by this parameter must match the hook settings. If
this parameter is left empty, all commitments are checked
regardless of the committing date.

(11 NOTE

You are not advised to store binary files in CodeArts Repo. Otherwise, the performance
and stability of the code repository will be affected.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 133

Repo
User Guide

2 New Version (Recommended)

2.9.3.4 Merge Requests

To configure MRs, you can choose Settings > Policy Settings > Merge Requests
on the repository details page.

Merge Requests applies to merge MRs. MRs can be merged only when all
configured MR conditions are met. You can select Score or Approval for Merge

Mechanism.

The settings take effect only for the repository configured. Only the repository
administrators and owners can view this tab page and configure MRs.

Merge Mechanism

e Score: Code review is included. Based on scoring, the minimum merging score
can be set and the score ranges from 0 to 5. The code can be merged only
when the score and mandatory review meet pass conditions. When selecting
the scoring mechanism, you need to set the minimum score.

e Approval: Code review and merge approval are included. Code can be merged
only after the number of reviewers reaches gate requirements. You are
advised to configure branch policies when you select the approval

mechanism.

(11 NOTE

By default, Approval is used. You can manually switch to Score.

After the merge mechanism is switched, the workflows of the MRs are changed. However,
the early created MRs retain the previous merge mechanism.

Merge Conditions

Table 2-19 Parameters

Parameter

Description

Merge after all

reviews are resolved.

After this parameter is selected, if Must resolve is
selected as the review comment, a message Review
comment gate: failed is displayed and the Merge
button is unavailable. If it is a common review
comment, the Resolved button does not exist, the MR
is not intercepted by the merge condition.

Must be associated
with CodeArts Req

e Associate only one ticket number: If this
parameter is selected, one MR can be associated
with only one ticket number.

e All E2E ticket numbers pass verification: If this
parameter is selected, all associated E2E ticket
numbers must pass the verification.

e Branches to configure the MR policy: Multiple
branches can be added. You can manually enter
wildcard characters and press. Press Enter, for
example, *-stable or production/*.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 134

Repo

User Guide 2 New Version (Recommended)

MR Settings

Table 2-20 Parameters

Parameter

Description

Do not merge your
own requests

After this parameter is selected, the Merge button is
unavailable when you view the MRs created by
yourself. You need to ask the person who has the
permission to merge the MRs.

A repo administrator
can forcibly merge
code

The project creator and administrator roles have the
permission to forcibly merge MRs. If the merging
conditions are not met, these roles can click Force
Merge to merge MRs.

Continue with code
review and comment
after requests are
merged

After this parameter is selected, you can continue to
review and comment on the code that has been
merged the MR.

Mark the
automatically merged
MRs as Closed (If all
commits in the B MR
are included in the A
MR, the B MR is
automatically merged
after the A MR is
merged. By default, the
B MR is marked as
merged. You can use
this parameter to mark
the B MR as closed.)

e |f this parameter is not selected, MRs that are
automatically merged are marked as merged.

e If this parameter is selected, MRs that are
automatically merged are marked as closed.

Cannot re-open a
Closed MR.

If this option is selected, the branch merge request
cannot be set back to Open after it is closed. Re-
open in the upper right corner is hidden.

rr—

This parameter is used for process control to prevent
review history from being tampered with.

Delete source branch
by default after the
MR is merged

After the merging, the source branch is deleted.
e A protected source branch cannot be deleted.

e This setting does not take effect for historical
MRs. Therefore, you do not need to worry about
branch loss.

Do not Squash

After this parameter is selected, the Squash button is
unavailable, and the entry for using this button is
unavailable in the MR.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

135

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

Enable Squash merge
for new MRs

Squash merge means that when merging two
branches, Git squashes all changes on the merged
branch into one and appends them to the end of the
current branch as merge commit, which simplifies
the branch. The only difference between squash
merge and common merge lies in the commitment
history. For common merge, the merge commitment
on the current branch usually has two commitment
records, while squash merge has only one
commitment record.

Merge Method

Table 2-21 Parameters

Parameter

Description

Merge commit

If this parameter is selected, a merge commit is
created for every merge, and merging is allowed as
long as there are no conflicts. That is, no matter
whether the baseline node is the latest node, the
baseline node can be merged if there is no conflict.

e Do not generate Merge nodes during Squash
merge: If this parameter is selected, no merge
node is generated during the squash merging.

e Use MR merger to generate Merge Commiit: If
this parameter is selected, the commit information
is recorded.

e Use MR creator to generate Merge Commit: If
this parameter is selected, the commit information
is recorded.

Merge commit with
semi-linear history

If this parameter is selected, a merge commit is
recorded for each merge operation. However,
different from Merge commit, the commitment must
be performed based on the latest commit node of
the target branch. Otherwise, the system prompts the
developer to perform the rebase operation. In this
merging mode, if the MR can be correctly
constructed, the target branch can be correctly
constructed after the merge is complete.

Fast-forward

If this parameter is selected, no merge commits are
created and all merges are fast-forwarded, which
means that merging is only allowed if the branch
could be fast-forwarded. When fast-forward merge is
not possible, the user is given the option to rebase.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 136

Repo
User Guide

2 New Version (Recommended)

Configure Branch Policy

Click Create to set a merge policy for a specified branch or all branches in the
repository.

(11 NOTE

Currently, branch policies can be set only for the Approval mechanism.

The following is an example of the branch policy priority:

Assume that there are policies A and B in the repository and their branches are the
same. The system uses the latest branch policy by default.

Assume that there are policies A and B in the repository. Branch a and branch b are
configured for policy A, and branch a is also configured for policy B. When a merge
request whose target branch is branch a is committed, the system uses policy B by
default.

If no branch policy is set in the approval mechanism, the default branch policy is used when
a merge request is committed. The branch policy can be edited and viewed but cannot be
deleted. The policy configuration is as follows:

Branches: *. By default, all branches are used and cannot be modified.
Reviewers Required: The default value is 0.

Approvals Required: The default value is 0.

Reset approval gate: This option is selected by default.

Reset review gate: This option is selected by default.

Add approvers/reviewers only from the following ones: This option is not selected by
default.

Enable pipeline gate: This option is not selected by default.
Mergers: This parameter is left blank by default.
Approvers: This parameter is left blank by default.
Reviewer: This parameter is left blank by default.

Table 2-22 Parameters

Parameter Description
Branches Set policies for all branches or a branch.
Reviewers Required Set Reviewers Required. When the number of

reviewer who give pass meets the Reviewers
Required, the gate is passed. 0 indicates that the
review gate is optional. However, if an MR is rejected
by a reviewer, it fails the gate.

Approvals Required Set Approvals Required. When the number of

approvals who give pass meets the Approvals
Required, the gate is passed. 0 indicates that the
approval gate is optional. However, if an MR is
rejected by an approver, it fails the gate.

Reset approval gate When code is re-pushed to the source branch of an
MR

Reset review gate When code is re-pushed to the source branch of an
MR

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 137

Repo
User Guide 2 New Version (Recommended)

Parameter Description

Add approvers/reviewers | If this option is selected, you can configure the list of
only from the following | New Approvers and New Reviewers. If you want to
ones add additional members, you can only add members
from the lists.

Enable pipeline gate If this option is selected, before the merge, you need
to pass all pipeline gates. This rule integrates the Cl
into the code development process.

Mergers The list of mandatory mergers can be configured.
When a merger request is created, the list is
automatically synchronized to the merger request.

Approvers The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

Reviewer The list of mandatory reviewers can be configured.
When a merge request is created, the list is
automatically synchronized to the merge request.

(11 NOTE

Example of a mandatory reviewer list:

e The Reviewers Required is 2. If the list of mandatory reviewers is empty, the 2
approvers in the list of New Reviewers give pass and the gate is passed.

e The Reviewers Required is 2. If the list of mandatory reviewers is not empty, the gate
can be approved only after at least one reviewer in the list give pass.

2.9.3.5 Review Comments

On the repository details page, choose Settings > Policy Settings > Reviews. The
review comment setting is used to standardize the review comments and
configure review comment templates, for details, seeReview Comment
Templates.

The settings take effect only for the repository configured.

Only repository administrators and owners can view this tab page and configure
the function.

Setting Review Comments
Step 1 Select Enable comment types and modules as required.

Step 2 Configure review comment categories.
e Enable preset comment types

If you select Enable preset comment types, you can directly use the preset
review comment categories.

e Customized Categories

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 138

Repo
User Guide 2 New Version (Recommended)

You can customize review comment categories. Enter a type name and press
Enter to save the settings.

(10 NOTE

The name can contain a maximum of 200 characters. A maximum of 20 names can be
created.

Step 3 Enter a category name in the text box under Comment Modules.
{0 NOTE

The name can contain a maximum of 200 characters. A maximum of 20 names can be
created.

Step 4 Set Mandatory fields to Verify for Comment Creation/Editing as required.
Step 5 Click Submit.

--—-End

Reviews

Enable comment types and modules
Enable preset comment types

Comment Types:

Realize Design Simulation Coding Style Security
Memory Regulations Function Performance Reliability
Architecture Other

Customize category:

Comment Modules:

Mandatory fields to Verify for Comment Creation/Editing:

Assigned 1o Comment type Comment
module

2.9.3.6 MR Evaluation

This function is used to set MR evaluation dimensions. After the dimensions are
set, you can evaluate the dimensions on the MR details page.

Setting MR Evaluation

Step 1 Select Enable MR User-defined Evaluation Dimension Classification. You can
add evaluation dimensions.

Enter a dimension name and press Enter to save the settings. The name can
contain a maximum of 200 characters. A maximum of 20 dimensions can be
created.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 139

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

If Enable MR User-defined Evaluation Dimension Classification is not selected, the
single-dimension MR evaluation is performed.

Step 2 Click Submits.
----End

MR Evaluation

Enable MR User-defined Evaluation Dimension Classification

Evaluation Dimension

Clear architecture Moderate amount of code Complete comments Clear code logic Proper exception handling

2.9.4 Service Integration

2.9.4.1 E2E Settings

Repo uses this E2E tracing setting to log code merge reasons, such as
implementing a requirement, fixing a bug, or completing a work item. Association
is enabled by default.

Integrated Systems

It integrates with CodeArts Req and use work items in CodeArts Req to associate
with code commits.

(10 NOTE

The repositories of Kanban projects does not support E2E settings.

Integration Policies

(Optional) Specify available selection conditions when you associate with a work
item.

Excluded States: States of work items that CANNOT be associated with.
Associable Types: Types of work items that can be associated with.

Applicable Branches: Branches to comply with preceding restrictions.

Automatic ID Rules Extraction

Automatic ID Rules Extraction (automatically extracting ticket numbers based on
code commitment information) are as follows:

e ID Prefix: (Optional) A maximum of 10 prefixes are supported, for example,
[Trouble ticket number or Requirement ticket number].

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 140

Repo
User Guide

2 New Version (Recommended)

Examples

(11 NOTE

If ID Prefix, Separator, and ID Suffix are not empty, the automatic ticket number

extraction function is enabled by default.

Separator: (Optional) The default value is a semicolon (;).
ID Suffix: (Optional) The default value is a newline character.

(1] NOTE

e The values of ID Prefix, Separator, and ID Suffix cannot be the same.

e If Separator is left empty, the values of ID Prefix and ID Suffix cannot be two

semicolons (;;).

e If ID Suffix is left empty, the values of ID Prefix and Separator cannot be \n.

e The values of ID Prefix, Separator, and ID Suffix are matched in full character

mode. Regular expressions are not supported.

Step 1 Configure E2E settings.

Go to the target repository.

Choose Settings > Service Integration > E2E Settings. The E2E Settings

page is displayed.

EHome <»Code) Merge Requests 1 (&Reviews [Associated Work ltems 7] Repository Statistics i Activities & Members | & Settings

E2E Settings

General Settings

Repo uses this E2E tracing setting to log code merge reasons, such as implementing a requirement, fixing a bug, or completing a work item. Re

Repository Management v ftems
Policy Settings « Integrated Systems
| Service Integration . ‘:)
Webhooks CodeArts Req

- Use work items in CodeArts Req

Configure the following integration policies and click Submit.
Applicable Branches: Select the target branch, for example, Dev.
ID Prefix: user-defined prefix, for example, Incorporated requirements.

Integration Policies

Excluded States States of work items that CANNOT be associated with
Associable Types Types of work items that can be associated with. e.g. Story/Task/Bug
Applicable Branches Branches to comply with preceding restrictions

Automatic ID Rules Extraction

1D Prefix Separator 1D Suffix
| Incorporated requirements
Step 2 Create a work item.
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 141

Repo
User Guide 2 New Version (Recommended)

1. Click the target project name to access the project.

2. On the current Work Items tab, click Create Work Item and choose Task
from the drop-down list box. The page for creating a work item is displayed.

Work Items Sprints Statistics Reports

Backlog Bug -+ Create Work ltem All wo

Id Subje

Epic
Feature

Story

Task

Bug

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

Plans Work ltems Sprints Statistics Reports

Al v Backlog Bug -+ Create Work Item All work items = Q Tracker. Epic | -

Id Subject Closed On Status

I T08635317 Iteration 1 - New

Step 3 Create a File.

1. Go to the repository list page and click the name of the target repository.

2. On the Code tab, click Create and choose Create File from the drop-down
list box. The page for creating a file is displayed.

[Home > Code 1% Merge Requests 0 (%: Reviews [5) Associated

011 MBFies - 1Commits ¥ 1Branches ©0Tags Tl Comparison
master
Q .
Tef | (3 Create File
com
c [3 Create DirECTOI":."
[gitignore {§ Create Submodule
b3 g
M} README.md & Upload File
M R
build.xml

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 142

Repo
User Guide

2 New Version (Recommended)

Enter the following information, retain the default values for other
parameters, and click OK.

File name: user-defined file name, for example, Sample_Code.
File content: user-defined file content.

Commit message: Enter the prefix and work item number in the E2E settings,

for example, 708635317.

Create File
Sampi_Cotk Empty Tl (o tempiat) v fext

1 <project nane="javalntDeno" basedir="." default="nain"
1 (praperty envirament="env" />
] Cproperty name="src.dir" value"con'f>
4
5 <property nane="build.dir" value"build"/>
6 Cproperty nane="classes. dir" value="${build. dir}/classes" />
1 coraperty nane="Jar.dir" value="${build.dir}/Jar")>
g <praperty nane="report.dir" value="${build. dir}/funitreport'/>
9 Ctaskdef nane="findbugs" classnane="edu.und. s, findbugs . anttask, FindBugsTask'/>
10
1
1 <path 1o="application” location="§{jar.dir}/${ant.project nane}. jar" />
it}
14 (property name="nain-class" values"con.gdd.hellokorld" />
15
16
1
it Ctarget nane="clean”>
19 (lelete dir="${build.dir}"/>
b ([target>
n

Cammit Message

Incorporated requirements 708635317 Tp

baseb!d

You can use keywords ', "fed", "resolve”, "iesalved", and "close" o associate the fle with

ou can add 965 Mot Characters, awork item inthe project For example, " #R20230202018492 fix 2 bug.

n Cancel

Step 4 Extract the ticket number when creating a merge request.

1.
2.

Switch to the Merge Requests tab and click New.

Select Dev as the source branch and master as the target branch, and click

Next. The page for creating a merge request is displayed.

At this point, the work item is automatically extracted to the merge request.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

143

Repo
User Guide 2 New Version (Recommended)

Create Merge Request

From Scrumo0girepo Dev into Scrumoosirepo master Change Branch

+Title Mergers

Add [WIP] to the title, to prevent a Work In Progress (WIP) merge request from being merged before it is ready Reviewers

Approvers
©« 2 HB = E @@ GBe@1Nn G FEED Settings

Delete source branch after merge
Squash

Tip
Directly edit a work item in the associated work item. You can also use keywords fix, fixed, resolve, resolved, and close plus a
number sign (%) in the description to associate with a work item. For example, fix #1R20230202018492 fix a bug
To set work item status and transition, go to " automatic transition ", To set E2E tracing for integration, go to " E2E Seitings "

Work ftems

[}
(]
&

Iteration 1 New &

--—-End
2.9.4.2 Webhooks

Introduction to Webhook

Developers can configure URLs of third-party systems on the Webhook page and
subscribe to events such as branch push and tag push of CodeArts Repo based on
project requirements. When a subscription event occurs, you can use a webhook to
send a POST request to the URL of a third-party system to trigger operations
related to your system (third-party system), such as popping up a notification
window, building or updating images, or performing deployment.

If you want to email repository change notifications, you can configure
Notifications in General Settings.

Configuring Webhooks

To configure webhooks, you can choose Settings > Service Integration >
Webhooks on the repository details page.

The settings take effect only for the repository configured.
Only repository administrators and owners can view this tab page and configure

webhooks.

Table 2-23 Parameters for creating a webhook

Param | Description
eter

Name | Custom name.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 144

Repo
User Guide

2 New Version (Recommended)

Param
eter

Description

Descri
ption

Description of the webhook.

URL

(Mandatory) Provided by the third-party CI/CD system.

Token
type

Used for webhook interface authentication of third-party services. The
options are as follows:

e X-Repo-Token
e X-Gitlab-Token
e X-Auth-Token

Token

Used for third-party Cl/CD system authentication. The authentication
information is stored in the HTTP request header.

Event
Type

The system can subscribe to the following events:
e Push events

e Tag push events

e Merge request events

e Comments

(11 NOTE

e A maximum of 20 webhooks can be created for a repository.

e You can configure a token when setting up a webhook. The token will be associated
with the webhook URL and sent to you in the X-Repo-Token header.

2.9.5 Template Management

2.9.5.1 MR Templates

To configure MR templates, you can choose Settings > Template Manage >
Merge Request Templates on the repository details page. When creating an MR,
you can select an MR template. The template content is automatically applied to

the MR.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure MR templates.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 145

Repo

User Guide 2 New Version (Recommended)

Creating an MR Template

Table 2-24 Parameters

Parameter Description
Template (Mandatory) Name of the template to be created.
name

Configure the
template as

(Optional) If this parameter is selected, this template is used by
default during MR creation.

the default

template

Auto extract (Optional) The options are as follows:

MR title e None
e Extract commit message
e Extract E2E title

Title (Optional) When Auto extract MR title is set to None, this
parameter can be customized.

Description This parameter is optional. Enter the description of the

template. The value contains a maximum of 10,000 characters.

2.9.5.2 Review Comment Templates

To configure comment templates, you can choose Settings > Template
Management > MR Comment Templates on the repository details page. You can
create, edit, and delete a comment template, and customize template information
such as Severity, Assign to, Review category, Module, and Description. When a
repository member reviews a comment, you can select a review comment
template. The template content is automatically applied to the merge request.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure review comment templates.

Creating a Review Comment Template

Table 2-25 Parameters

Parameter Description
Template (Mandatory) Name of the template to be created.
name

Configure the
template as
the default
template

(Optional) If this parameter is selected, this template is used by
default during comment reviewing.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

146

Repo
User Guide

2 New Version (Recommended)

Parameter

Description

Severity

(Optional) Classified into the following types based on problem
severity: fatal, major, minor, and Suggestion.

Assign To

This parameter is optional.
e |f this parameter is set to empty:

- When review comments are added to an MR, the
comments are assigned to the MR creator by default.

- When review comments are added to a file or Commit,
the comments are assigned to nobody.

e If this parameter is set to the MR creator or Commit
author.

- When review comments are added to an MR, the
comments are assigned to the MR creator by default.

- When review comments are added to a file or Commit,
the comments are assigned to the Commit author by
default.

e Assign to specific person.

- When review comments are added to an MR, the review
comments are assigned to a specific person by default.

- When review comments are added to a file or Commit,
the review comments are assigned to a specific person by
default.

Review
category

This parameter is optional and is disabled by default. You need
to Enable review comment categories and modules and
configure the review comment category. For details, see Review
comments.

Comment
module

This parameter is optional and is disabled by default. You need
to Enable review comment categories and modules and
configure the review comment module. For details, see Review
comments.

Description

This parameter is optional. Enter the description of the
template. The description can be previewed.

2.9.6 Security Management

2.9.6.1 Deploy Keys

The deploy key is the public key of the SSH key generated locally. However, the
deploy keys and SSH keys of a repository cannot be the same. Deploy keys allow
you to clone repositories with read only access over SSH. They are mainly used in
scenarios such as repository deployment and continuous integration.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 147

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

e Multiple repositories can use the same deploy key, and a maximum of 10 deploy keys
can be added to a repository.

e The difference between an SSH key and repository deploy key is that the former is
associated with a user and PC and the latter is associated with a repository. The SSH key
has the read and write permissions on the repository, and the deploy key has the read-
only permission on the repository.

e The settings take effect only for the repository configured.
e Only the repository administrators and owners can view this tab page and configure
deploy keys.

To configure the deploy keys, choose Settings > Security Management > Deploy
Keys on the repository details page. The deploy key is a key that has only the
read-only permission on the repositories.

Click Add Deploy Key to create a deploy key. For details about how to generate a
local key, see Generating and Configuring an SSH Key.

2.9.6.2 IP Address Whitelists

About IP Address Whitelists

e An IP address whitelist includes an IP address segment and several access
control settings. The whitelist restricts users' access, upload, and download
permissions to enhance repository security.

e The IP address whitelist can be configured only for repositories whose visibility
is Private. Repositories whose visibility is Public or Public template are not
supported.

IP Address Whitelist Formats

IPv4 and IPv6 are supported. The following table lists the three formats of IP
address whitelists.

Table 2-26 IP address whitelist formats

Format Description

Specified | This is the simplest IP address whitelist format. You can add the IP
IP address of your PC to the whitelist, for example, 100.*.*.123.
Address

IP address | If you have multiple servers and their IP addresses are consecutive

segment | or the IP address of your server dynamically changes in a network

segment, you can add the IP address segment, for example, 100.*.*,
0 to 100.*.*.255.

CIDR e When your server on a LAN uses the CIDR, you can specify a 32-
block bit egress IP address of the LAN and the number of bits for a
specified network prefix.

e Requests from the same IP address are accepted if the network
prefix is the same as the specified one.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 148

Repo
User Guide

2 New Version (Recommended)

Configuring IP Address Whitelists

IP address whitelists can be created in the following levels:

(11 NOTE

If the Private repository for which the IP address whitelist has been configured is switched
to a Public repository, you can upload and download code on the CodeArts Repo page or
Git client.

IP Address whitelists. The whitelists are set for all cloud services. IP addresses that are not
in the whitelist are blocked upon login. For details, see Access Control

IP address whitelist for repository. It allows access only from IP addresses in
the whitelist to a specific repository. To set the whitelist, choose Settings >
Security Management >IP Address Whitelist (IPv4 and IPv6 addresses are
supported. For details, see IP Address Whitelist Formats).

Allowed to access the repository: Only whitelisted IP addresses and the
repository creator can access the repository.

Allowed to download code : Only whitelisted IP addresses can download
code online and clone code locally.

Allowed to commit code: Only whitelisted IP addresses can modify and
upload code online, or commit code locally. Code-based build project
orchestration and YAML file synchronization are not affected.

(10 NOTE

e Commit code: Create, edit, delete, upload and rename files, create and delete
directories, submodules, branches, and tags, resolve code conflicts, create and
merge MRs, cherry-pick, revert, use LFS storage, and rebase.

e Download code: Download a single file and branches, tags, repositories and
backup repositories.

e Local download: Download code through SSH and HTTPS, and clone repository
through deploying keys.
e Local commit: Commit code through SSH and HTTPS.

e Repository synchronization is not affected by the IP address whitelist.

Tenant-level IP address whitelist: To set IP address whitelists for repositories
of all accounts from a tenant, log in to the CodeArts Repo repository list page,
click the alias in the upper right corner, and choose All Account Settings >
Repo > Whitelists for All Accounts, as shown in the following figure. The
configuration rules are the same as those of repository-level IP address
whitelists.

Only tenant accounts have permissions to configure Whitelist for All

Accounts. Click “ next to Add Address and select Prioritize this List. For
details about the logic of cloning the Git client or downloading the repository
source code on the Ul, see the following table.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 149

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_07_0003.html

Repo

User Guide 2 New Version (Recommended)
Acco | Configur | Configu | Priority
unt- | e re
level | Tenant- | Reposit
Whi | level ory-
telis | Whitelis | Level
t t Whitelis
Prior t
itize
d
(Prio
ritiz
e
This
List)
Enab | x X All IP addresses are allowed.
led
X v The repository-level whitelist prevails.
X The tenant-level whitelist prevails.
v The intersection of the tenant-level whitelist
and repository-level whitelist prevails.
Disa | x X All IP addresses can pass.
bled
x v The repository-level whitelist prevails.
v X The tenant-level whitelist prevails.
v v The repository-level whitelist prevails.

2.9.6.3 Risky Operations

To configure risky operations, choose Settings > Security Management > Risky
Operations on the repository details page.

Only the repository administrators and owners can view this tab page and
configure risky operations.

Risky operations are as follows:

e Transfer repository ownership: The ownership of a repository can be
transferred to another person in the repository but cannot be transferred to a
viewer or custom role.

e Delete repository: The repository cannot be recovered after being deleted.

e Rename repository: After renaming a repository, check the configuration
related to the repository name in a timely manner.

2.9.6.4 Watermarks

On the repository details page, choose Settings > Security Management >
Watermark. The watermark content consists of your account name and current

time.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 150

Repo
User Guide 2 New Version (Recommended)

Only repository administrators and owners can view this tab page and configure
the watermark function.

Watermarks will be displayed on code repository pages to reduce the risk of code
asset leakage.

Watermark

Watermarks protect your company's core assets. Use them to deter and track dissemination by photos, screenshots, and other unauthorized means

@

2.9.6.5 Repository Locking

When a new software version is ready for release, administrators can lock the
repository to protect it from being compromised. After the repository is locked, no
one (including the administrators) can commit code to any of its branches.

To lock a repository, choose Settings > Security Management > Repository
Locking on the repository details page.

Only the repository administrators and owners can view this tab page and
configure repository locking.

Repository Locking

(Administrator only) Lock your repository to protect it when a new software version is ready for release
No one can commit code to any branch, create comments, or perform other related add operations. For details, Refer to the help document .
You can filter locked repositories in the list on the homepage

After the administrator locks the repository, no one can use the repository
functions in Table 2-27.

Table 2-27 List of functions that cannot be executed

Tab Page Function

Code If the repository is locked, the following functions cannot be
performed on the Code tab page:

e C(reate, edit, delete, rename, and upload a file

Create and delete a directory
Create and delete a submodule

Cherry-Pick and revert a file

Add, delete, edit, reply, and resolve a review and comment

Branch & If the repository is locked, the following functions cannot be
Tag performed on the Branch or Tag subtab of the Code tab page:

e Create, edit, and delete a branch
e Create and delete a Tag

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 151

Repo
User Guide

2 New Version (Recommended)

Tab Page

Function

Merge
Requests

If the repository is locked, the following functions cannot be
performed on the Merge Requests details page:

e Create, edit, close, re-open, and merge a merge request
e Cherry-Pick and revert a merge request

e Resolve a code conflict

e Add, delete, edit, reply, and resolve a review comment

Repository &
Members

If the repository is locked, the following functions cannot be
performed:

e Fork a repository
e Add, delete, edit, and approve a member

Settings

If the repository is locked, the following functions cannot be
performed on the Settings tab page:

e Repository settings

e Submodules

e Policy settings (All)

e Service integration (All)

(11 NOTE

After the repository is locked, changes to project members will be synchronized to the
repository, affecting repository members.

2.9.6.6 Audit Logs

To view audit logs, choose Settings > Security Management > Audit Logs on the

repository details page.

Only the repository administrators and owners can view this tab page.

Audit logs record only changes to repository attributes. Check daily development
activities such as MRs, reviews, and member changes from repository dynamics.

You can filter logs by time segment, operator, operation type, or log information.

The operation types include repository information, submission rule, merge
request, and merge request policy.

Audit Logs

Q

Operator

Protected Branches

AllTypes * AllMembers

Type Log

configured ‘master as a protected branch
Created Jul 05, 2023 16:59:03 GMT+8:00

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

Repo
User Guide

2 New Version (Recommended)

2.10 Submitting Code to the CodeArts Repo

2.10.1 Creating a Commit

Background

Prerequisites

Procedure

Step 1

Step 2

Step 3

In code development, developers usually clone code from CodeArts Repo to the
local PC to develop code locally, and the commit the code to CodeArts Repo after
completing the phased development task. This section describes how to use the
Git client to commit the modified code.

Git Installation and Configuration.
You have created a repository in CodeArts Repo. For details, see Overview.

You have set the SSH keys or HTTPS password. For details, see Setting SSH
Key or HTTPS Password for CodeArts Repo Repository

4. You have Cloned the CodeArts Repo Repository to the Local Host. For details,
see Overview.

Generally, developers do not directly develop code in the master branch. Instead,
they create a feature branch based on the master or develop branch, and develop
code in it. Then they commit the feature branch to CodeArts Repo, and merge it
into the master or develop branch. The preceding operations are simulated as
follows:

Go to the local repository directory and open the Git client. Take Git Bash as an
example. The principles and commands of other Git management tools are the
same.

Create a feature1001 branch based on the master branch, switch to the created
branch, and run the following command in the master branch:
git checkout -b feature1001 #Shown in 1 in the following figure.

This command creates a branch and then switches to the branch.

If the command is successfully executed, 2 in the following figure is shown. You
can run the Is command to view the files of the branch (as shown in 3 in the
following figure), which are the same as those of the master branch currently.

001
Featurelool”

Modify code in the feature branch (code development).

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 153

Repo
User Guide 2 New Version (Recommended)

Git supports Linux commands. In this case, the touch command is used to create a
file named newFeature1001.html, indicating that the developer has developed
new features locally and a new file is added into the local code repository.

touch newFeature1001.html
Run the Is command again to view the created file.

Step 4 Run the add and commit commands to add the file from the working directory to
the staging area, and then commit the file to the local repository. (For details, see
Overview.)

You can also run the status command to check the file status.

1. Run the status command. The command output shows that a file in the
working directory is not included in version management, as shown in 1 in
the following figure.

2. Run the add command to add the file to the staging area, as shown in 2 in
the following figure.
git add . # Period (.) means all files, including hidden files. You can also specify a file.

3. Run the status command. The command output shows that the file has been
added to the staging area and is waiting to be committed, as shown in 3 in
the following figure.

4. Run the commit command to commit the file to the local repository, as

shown in 4 in the following figure.
git commit -m " <your_commit_message>"

5. Check the file status again. If no file to be committed exists, the commit is
successful, as shown in 5 in the following figure.

nothing added to commit but untracked

% git add .

" to unstage)

Step 5 Push a local branch to CodeArts Repo.

git push --set-upstream origin feature1001

Run the preceding command to create a branch that is the same as your local
feature1001 branch in CodeArts Repo, and associate them and synchronize the
branch.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 154

Repo
User Guide 2 New Version (Recommended)

origin indicates the alias of your CodeArts Repo. The default alias of a directly
controllable repository is origin. You can also use the repository address.

1] Teaturel00l fe
'featurelD0l' =et up to emote branch 'featurel00l' from 'origin'.

(11 NOTE

If the push fails, check the connectivity.
e Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@******** ,com

If the command output contains connect to host ******** com port 22: Connection
timed out, your network is restricted from accessing CodeArts Repo. Contact your
network administrator.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeArts Repo
console. For details, see SSH Keys. Alternatively, check whether the HTTPS password is
correctly configured.

e Check the IP address whitelist. If no whitelist is configured, all IP addresses are allowed
to access the repository. If a whitelist is configured, only IP addresses in the whitelist are
allowed to access the repository.

Step 6 View the CodeArts Repo repository branch.

Log in to CodeArts Repo and go to your repository. In the Files tab page, you can
switch to your branch in CodeArts Repo.

(11 NOTE

If the branch you just committed is not displayed, your origin may be bound to another
repository. Use the repository address to commit the branch again.

Step 7 Create a merge request. For details, see Managing MRs. Notify the approver to
review the request and merge the new feature into the master or develop branch.

--—-End

2.10.2 Transmitting and Storing a File in Encryption Mode

CodeArts Repo uses git-crypt for encrypted storage and transmission of
confidential and sensitive files.

About git-crypt

git-crypt is a third-party open-source software that can transparently encrypt and
decrypt files in the Git repository. It can encrypt and store specified files and file
types. Developers can store encrypted files (such as confidential information or
sensitive data) and shared code in the same repository and pull and push them
like in @ common repository. Only the person who has the corresponding file key

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 155

Repo
User Guide

2 New Version (Recommended)

can view the content of the encrypted files, but others are not restricted to read
and write unencrypted files.

git-crypt allows you to encrypt only specific files without locking the entire
repository, facilitating team cooperation and ensuring information security.

Using Key Pairs for Encryption and Decryption on Windows

Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Put the .exe file in the folder. You do not need to run it.

C\Program Files\Githcm d|

m git

n- git-crypt
git-gui
gitk

B git-Ifs

| start-ssh-agent

| start-ssh-pageant

Step 3 Generate a key pair.

1.

Open Git Bash and go to the local repository, as shown in 1 in the following
figure.

Run the following command to generate a key pair, as shown in 2 in the
following figure.

git-crypt init

Export the key file. In this example, the key file is exported to the C:\test
directory and named KeyFile. Run the following command, as shown in 3 in

the following figure.
git-crypt export-key /c/test/keyfile

MINGWeE4:/c/test/20201123

% cd 20201123

% git-crypt export-key fc/test/KeyFil

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 156

https://github.com/oholovko/git-crypt-windows/releases

Repo
User Guide

2 New Version (Recommended)

Check whether the key is generated in the file path where the key is exported.
In this example, check whether the KeyfFile file exists in the C:\test directory,
as shown in the following figure.

Marne Date modified Type

. KeyFile 21, 022 11:01 Text Document

The computer containing the key file can decrypt the corresponding encrypted
file.

Step 4 Configure the encryption scope for the repository.

1. Create a file named .gitattributes in the root directory of the repository.
2. Open the .gitattributes file and run the following command to set the
encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt
Four examples are as follows:
FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.
*java filter=git-crypt diff=git-crypt # The .java file is encrypted.
G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.
ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.
git £ .gitattributes - Notepad| = | B [
ForTest File Edit Format View Help
FT FT/file0l filter=git-crypt diff=git-crypt
images *, java filter=git-crypt diff=git-crvpt
erc G filter=glt-crypt diff=git-crypt
o ForTest/*t filter=git-crypt diff=gzit-crypt
|| .gitattributes
|| .gitignare
| 1java
[Gito01.b
2| pom.xml
|| README.md
L] NOTE

e If the system prompts you to enter the file name when you create the .gitattributes
file, you can enter .gitattributes. to create the file. If you run the Linux command to
create the file, this problem does not occur.

e Do not save the .gitattributes file as a .txt file. Otherwise, the configuration does not
take effect.

Step 5 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 157

Repo
User Guide 2 New Version (Recommended)

MINGW64:/c/test/20201123

IARNING: staged/committed wversi

ez but

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 6 Decrypt the file.

1. Ensure that the git-crypt file exists in the Git installation path on the local
computer.

CAProgram Files\Githcm d|

w1 qit

n-| git-crypt
git-gui
gitk

B git-Ifs

| start-ssh-agent

| start-ssh-pageant

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 158

Repo
User Guide 2 New Version (Recommended)

2. Clone the repository from CodeArts Repo to the local host.

3. Obtain the key file for encrypting the repository and store it on the local
computer.

. System... » test

Marne Date modified Type

. KeyFile Text Document

4. Go to the repository directory and right-click Git Bash.

5. Run the decryption command. If no command output is displayed, the

command is successfully executed.
git-crypt unlock /C/test/KeyFile # Replace /C/test/KeyFile with the actual key storage path.

--—-End

Encrypting and Decrypting a File in GPG Mode on Windows

Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Put the .exe file in the folder. You do not need to run it.

Ch\Program FileshGithcm |::||

1 it
m- git-crypt
git-gui
gitk

n git-Ifs

| start-ssh-agent

4| start-ssh-pageant

Step 3 Download the GPG of the latest version. When you are prompted to donate the
open-source software, select 0 to skip the donation process.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 159

https://github.com/oholovko/git-crypt-windows/releases
https://www.gnupg.org/download/

Repo
User Guide

2 New Version (Recommended)

0s Where Description

Windows Gpgdwin Full featured Windows version of GnuPG
download sig Simple installer for the current GnuPG
download sig Simple installer for GnuPG 1.4

OsX Mac GPG Installer from the gpgtools project
GnuPG for 0OS X Installer for GnuPG

Debian Debian site GnuPG is part of Debian

RPM rpmfind RPM packages for different O%

Android Guardian project Provides a GnuPG framework

VMS antinode.info A port of GnuPG 1.4 to OpenVMS5

RISCOS home page A port of GnuPG to RISC OS

Double-click to start the installation. Click Next to complete the installation.

Step 4 Generate a key pair in GPG mode.

1. Open Git Bash and run the following command:

gpg --gen-key

2. Enter the name and email address as prompted.

ftware Foundation,
tribute 1t.
xtent

s/Administrator/.gnupg’ created
gnupg,/pubr kbx" created
key" for a full

GnuPG needs to construct a user ID to 1dentify your

est@huahua. com

<gpgTest@huahua. com>

Change (N)ame, (E)mail, or (0)kay/(Quit?

3. Enter o as prompted and press Enter. The dialog boxes for entering and
confirming the password are displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 160

Repo
User Guide 2 New Version (Recommended)

Pinentry X

Flease enterthe passphrase to
protectyour new key

Passphrase: “

oK Cancel

The password can be empty. To ensure information security, you are advised
to enter a password that complies with the standard (this password is
required for decryption).

4. |If the following information is displayed, the GPG key pair is generated
successfully.

public and secret key created and signed.

pub rsa3072 2020 24 [5C]
oDL

uid

sub r=a3ilyz

Step 5 Initialize the repository encryption.

1. Open Git bash in the root directory of the repository and run the following

command to initialize the repository:
git-crypt init

§ cd 20201124

2. Run the following command to add a copy of the key to your repository. The
copy has been encrypted using your public GPG key.
git-crypt add-gpg-user USER_ID
USER_ID can be the name, email address, or fingerprint that uniquely
identifies the key, as shown in 1, 2, and 3 in the following figure in sequence.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 161

Repo
User Guide 2 New Version (Recommended)

public and secret key created and signed.

pub rsa3072 2020-11-24 [SC] [expires: 2022-11-24]
71EQAD
2 gpgTest <gpgTest@huahua.com> g
2020-11-24 [E] [expires: 2022-11-24]

After the command is executed, a message is displayed, indicating that
the .git-crypt folder and two files in it are created.

MINGW64:/c/dev/test/20201124

add-apg gpgTest

Step 6 Configure the encryption scope for the repository.

1. Go to the .git-crypt folder in the repository.

2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or _file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:

FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

* java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

keys .gitattributes - Netepad

L .gitattributes File Edit Format View Help

Do not edit this file. To specify the files to encrypt, create yvour own
.gitattributes file in the directory where your files are.

+ |filter !diff

*, gpg binary

FT/file0l. txt filter=git-crvpt diff=git-crypt

#, java filter=git-crypt diff=glt-crypt

G filter=git-crypt diff=git-crvpt

ForTest/+ filter=git-crypt Hiff=git-crypt

3. Copy the .gitattributes file to the root directory of the repository.
Step 7 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 162

Repo
User Guide 2 New Version (Recommended)

MINGW®64:/c/dev/test/20201124

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.
Step 8 Export the key.

1. Lists the currently visible keys. You can view the name, email address, and
fingerprint of each key.
gpg --list-keys

2. Run the gpg --export-secret-key command to export the keys. In this

example, the gpgTest key is exported to drive C and named Key.
gpg --export-secret-key -a gpgTest > /c/key # -a indicates that the key is displayed in text format.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 163

Repo
User Guide

2 New Version (Recommended)

3.

During the execution, the system prompts you to enter the key password.
Enter the correct password.

No command output is displayed. You can view the key file in the
corresponding directory (drive C in this example).

Send the generated key to the team members to share the encrypted file.

Step 9 Import the key and decrypt the file.

1.

To decrypt files on another computer, you need to download and install git-
crypt and GPG based on Git. For details, see the previous steps in this section.

Clone the corresponding repository to the local host.

Obtain the key of the corresponding encrypted file. For details about how to
export the key, see the previous step. In this example, the obtained key is
stored in drive C.

Go to the repository, open Git Bash, and run the import command to import
the key.

gpg --import /c/key

/c/Key is the key path and user-defined key name in this example. Replace them with the actual
ones.

During the import, the system prompts you to enter the password of the key.
If the import is successful, the following figure is displayed.

Run the unlock command to decrypt the file.

git-crypt unlock

During the decryption, a dialog box is displayed, prompting you to enter the
password of the key. If no command output is displayed after you enter the
correct password, the decryption is successful.

t@huahua. com=" imported

§ git-crypt unlock

Step 10 View the file before and after decryption.

--—-End

Application of git-crypt Encryption in Teamwork

In most cases, a team needs to store files that have restricted disclosure in the
code repository. It can use CodeArts Repo, Git, and git-crypt to encrypt some files
in the distributed open-source repository.

Generally, Key pair encryption can meet the requirements of restricting the
access to some files.

When a team needs to set different confidential levels for encrypted files, the GPG
encryption can be used. This encryption mode allows you to use different keys to
encrypt different files in the same repository and share the keys of different
confidential levels with team members, restricting file access by level.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 164

Repo
User Guide

2 New Version (Recommended)

Installing git-crypt and gpg on Linux and macOS

Installing git-crypt and gpg on Linux

Linux installation environment

Software Debian/Ubuntu RHEL/CentOS Package
Package

Make make make

A C++11 compiler (e.g. | g++ gcc-c++

gcc 4.9+)

OpenSSL development | libssl-dev openssl-devel

files

In Linux, install git-crypt by compiling the source code.
Download the source code.

make
make install

Install git-crypt to a specified directory
make install PREFIX=/usr/local
In Linux, install GPG by compiling the source code.

Download the source code.

./configure
make
make install

Install git-crypt using the Debian package.
You can download the source code.

The Debian package can be found in the debian branch of the project Git
repository.

The software package is built using git-buildpackage, as shown in the
following figure.

git checkout debian

git-buildpackage -uc -us

Install GPG using the build package in Debian.
sudo apt-get install gnupg

Install git-crypt and GPG on macOS.

Install git-crypt on macOS.

Run the following command to install git-crypt using the brew package
manager.

brew install git-crypt
Install GPG on macOS.

Run the following command to install git-crypt using the brew package
manager.

brew install gpg

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

165

https://github.com/AGWA/git-crypt
https://www.gnupg.org/download/index.en.html
https://github.com/AGWA/git-crypt

Repo
User Guide 2 New Version (Recommended)

2.10.3 Viewing Commit History

CodeArts Repo allows you to view details about the commit history and related
file changes.

You can view the commit history on the History tab page of the Files or
repository dynamics. You can click a commit record to view the committer,
commit number, parent node, number of comments, and code change
comparisons.

initial commit

You can comment on a commit or reply a comment.

cccccc

You can click the icon in the following figure to switch the horizontal or vertical
display of code change comparison. You can click Show All to view the full text of
the files involved in the commit.

+ Show A = Settings

Settings

Change Display E

lgnore Space

2.10.4 Pushing Code to CodeArts Repo Using Eclipse

Background

You can install EGit on Eclipse so that Eclipse can be connected with CodeArts
Repo and be used for operations such as committing code from a local Git
repository to a remote one.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 166

Repo
User Guide 2 New Version (Recommended)

(11 NOTE

Only Eclipse 4.4 or later versions are supported.

e For the first push:
1. Create a repository on the local computer, that is, the local repository.
2. Commit the update to the local repository.

3. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

e |[f it is not the first push:
1. Commit the modified code to the local repository.

2. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

Step 1: Installing EGit on Eclipse
Eclipse 4.4 is used in the following procedure.

1. On the Eclipse toolbar, choose Help > Install New Software....

ClearCase Window

E
ide! Welcome

- - (7) Help Contents
&7 Search
Dynamic Help
ion
Key Assist., Ctrl+Shift+L

Tips and Tricks...
Cheat Sheets...

Check for Updates
[Install New Software...]

About Eclipse SDK

2. In the Install window displayed, click Add....
Set Location to https://download.eclipse.org/egit/updates.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 167

https://download.eclipse.org/egit/updates

Repo
2 New Version (Recommended)

User Guide
= Install = || =R
Available Software
Select a site or enter the location of a site, . J‘l_

Work with: type or select a site =

Find mare software by warking with the ‘Available Software Sites' preferences,

type filter text
b | & Add Site e
| () Thed)
Mame: | EGit Local.. |
Locatio Archive.., |
@ [ok || Ccancel
Details

| Show only the latest versions of available software Hide items that are already installed

[¥] Group items by category What is already installed?

V| Comtact all update sites during install to find required software

3. Click OK. Then, click Next until the installation is finished.
Restart Eclipse after the installation.

Step 2: Configuring EGit on Eclipse
1. On the Eclipse toolbar, choose Window > Preferences > Team > Git >
Configuration.
Set Key to a registered username.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

168

Repo

User Guide 2 New Version (Recommended)
Preforences |
L Configuration - -
& Ganaral
= Ant User Settings System Settings Repositery Settimgs
@ Hal
= Installf'llpdnle Location: C:'Decoments5 Open

Aatematic Updatez

hvailable Software Si Key Valus Add Entry. .

® Jeva) i
& Run/Debug & Add a configuration entry rs(

e Add a configuration entry

= Tean
® CvE Flease enter o key, ¢ ¢ “user nans” and a value
File Content

= Gt

Commit Dislog Eey |user nane
Configuration
Confirmation Dials Yaloe
History
Labal Dacerstions
Projects
Synchranize [0x][canea |
F¥indow Cache
Tpured Ressuress
Models
i Usage Dats Collector
Validation
& I

< 3 [Eesltrre nefamlts] [_Hﬁfply J
@ Lo J[ctwea |

2. Click OK.

email indicates the bound email address. If the username is not set
previously, set it in this step.

Configuration L= -

User Settings |System Settings | Repositorv Settings|

Location: C:'\Documents and Setting=\amssy\ gitconfig |
ey Value [Ei e
= mser
email " 3 com
name w 3

Step 3: Creating a Project and Committing Code to the Local Git Repository

1. Create the git_demo project and the HelloWorld.java class.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 169

Repo
User Guide

2 New Version (Recommended)

¥ Fackage Explorer 23 = B8

= 'LEJ' git_demo

= # src

- ecom. test

=

[J] HelloWorld java

=@ JRE System Library [jdkl. 6. 0_L1C
—

=
&

&®

88888

B

5
—
:JI_‘
o]
al_.
=1
al o
=
i
&

resources. jar = F:'\Frogram I
rt. jar - F:‘\Program Files\J3
juze. jar = F:\Program Files
jea. jar = F:\Program Filesh]
charsets, jar - F:\Frogram Fi
dnzns. jar - F: '"Program Files
localedata, jar - F:'\Frogzram

zunjece_provider. jar - F:'\Frd
sunmscapl. jar — F;\Frogram [
emnnlerell dar = F \Prasram

[J] HelloWorld java 2
B f.i w-r:l:l

package com.test;

public class HelloWorld !

= public static woid main/(!

2. Share the git_demo project with the local repository.

[4 Package Explorer e

= B[[Hello¥orld. java 53

- y @ /5]
=l = | @ :
nackage Com.test;
o .
a&
=l Go Inte
N .) “HelloWorld
Open in Hew Window
== ;
m Open Type Mierarchy Tt atic void main(String[]
Show In ALt+5hi £+ 4
[
& 55 Copy CtirliC
C: 5= Copy Qualified Hame
i :: Paste CirltV¥
g &
& ¥ Delete Delete
& _-"_ Remowe £ i I C t 1E4
* Build Path v
. 9 Source ALt #Shi £145 L4
B J¢ :
Refactor ALt+5hi £44T 4
W T4
Eag Import. . .
L3 Expart. ..
< Refresh s
Cloze Froject
Assign Workang Sets. ..
Run A= »
Debug As »
Validate

Compare With
Restore from Local History. ..

=

share Project.

3. In the Share Project window displayed, select Git.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 170

Repo
User Guide

2 New Version (Recommended)

& Share Project E'
Share Project S
Select the repository plugz-in that will be used to share the selected project. @

Select a repozitory type:
o
B CYs

4. Click Next. The Configure Git Repository dialog box

& Configure Git Repository

is displayed.

Configure Git Repository
Select repository location

Eﬂse or crea# repository in parent folder of project

Project Location

Repository
V|t gat_dem E:\study\tools\eclipseiworkspace\git_demo gt
¥ dem E:\study\tools\eclipse\work \git_d

L Finish I l Cancel J

5. Click Create Repository to create a Git repository.

The directory is in the untracked status, indicated by a question mark (?).
Choose Team > Commit... to commit code to the local repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 171

Repo

User Guide 2 New Version (Recommended)
ﬂ Package Explorer S\:{ﬂ . = m| E, HelloWorld java)]
—:'I G:,/ A~ ot @/ w4 3 Commit
o - — pa seryex™ | package c r)
Hew L4 .
Go Into
Remote »
Open in Hew Window JQH} Switch To »
Open Type Hierarchy F4 E A;vemced vy b
Show In ALt+5hi £r+Y L4 o
|2 Copy Ctrl+C 9o il
5= Copy Qualified Wame = Synchronize Workspace
:.', Paste Ctrl+V¥ & e
¥ Delete Delete £
T Merge. ..
Bemowe from Context trlt+al t+Sha f1+Down
Build Path "
Source ALt+Shi £145 b =
1 Refactor Al t+Shy £14T L4 Create Patch. ..
ly Fatch. ..
S Apply Fatc
L3 Export. .. ¥ | Lgnore
-f.h Refresh FS = Add to Imdex
Cloze Project % Remove from Index
Assign Worlang Sets, .. EG Untrack
Bun As r {[)) Show in Repositories Yiew
Debug As 4 ;J Show in History
Validate
I} Disconnect
Compare With L)

6. In the Commit Changes dialog box displayed, set the commit message.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 172

Repo
User Guide 2 New Version (Recommended)

& Commit Changes

Commit Changes to Git Repository

Commit message 5> b

[First submission

Anthor: | T N 3e com? |

Committer: il 3] com* |

21| 4
Status Fath
[¥ [.claszpath i
O % .project
= t;.'_;, bin/comftest/HelloWorld. class
[srefcomftest/Helloforld. java
Fush
[[JPush the changes to upstresm
® l Commi t] I Cancel

7. Click Commit to commit the code to the local repository.

Mt - -

git_demo master]

ystem Library [jdkl 6.0_1C

+ E resources. jar = F \Frogram |
| I'_‘.—'_’; rt. jar = F:"\Program Files'Js
+ E‘; jsse. jar - F:\Program Files!
B jee jar - F:\Program Files\]
@ 9 charsets. jar - F:\Program F3
+ Iqu dnsns. jar — F:'\Frogram File:
& IE localedata. jar = F!\Frogran
4 (mo sunjee_provider jar - F \Fro
+ @; sunmscapi. jar - F:\Program [
(o sunpkesll. jar - F:'Frogram I

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 173

Repo
User Guide

2 New Version (Recommended)

Step 4: Committing Code in the Local Repository to the Remote Git

Repository
1.

2.

3.

Create a repositor in CodeArts Repo. For details, see Overview.
Go to the repository details page and copy the repository URL.
Choose Team > Remote > Push... to push the code to the remote repository.

[§ Package Explorer [= O || [J] HelloKorld. java &
Bl | & /=]) Commit. . Ctrlt#
=1 o package c
Hew »

Go Into

id <) Fetch From..

F4 =

Open in Hew Window

b

Open Type Hierarchy

Shay In KLL+Sh ELH p|_ Mutnced * % Fereh from Gerrit...
3 Push to Gerrit. ..
Pull =
S Copy Ctel4C & bal
B Copy Qualified Nene Synchronize Forkspace
B Peste Corlsy
3 Delete Delete ¥
% Merge. ..
= Reset. ..
Build Fath i
| Sewee ALUHSHi FS | Filebese.
i Refactor AL t+5hi £44T » Create Patch. .
Apply Fatch
gig Inport. .. e
£ Export. ..) Ignore
& Refresh Fs g8 Add to Index

Cloge Project

Assign Working Sets. ..

", Remowe from Index
& Untrack

Eun As *| @ Show in Repositories View
» e

Debug As 5/ Show in Histery

Yalidate

58 Disconnect

Compare With b [
Replace ¥ith v

In the Push to Another Repository dialog box, set the parameters.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 174

Repo
User Guide 2 New Version (Recommended)

i@} Push to Another Repository = (==
Destination Git Repository

Enter the location of the destination repository. ‘'

-Conf‘igured remote repnsitory:
L:if_ ,_1:r'|,_;.__1':

@ Custom URI:

Lacation
URL: 3 fgit_deme | Local File...
Host: P e com

Repository path: /wdEEH%23/git_demo.git

Connection

Protocol: |hitps =

Port:

Authentication

User: e

Password: sssssssnes

Store in Secure Store

*=d

2 csace [News | Fen [Cancel |

4. Click Next. The Push Ref Specifications dialog box is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 175

Repo
User Guide

2 New Version (Recommended)

5.

Push Ref Specifications

Select refs to push

Add createfupaate specification
Source ref:

Y yefs/heads/master

Destination ref:

v |re-f.s;"he-adsfmaste.-r

1‘-_'5'__4

-

v| | 4 hd Spec I

Add delete ref specification

Bemote ref to delete: -l

v|

Add predefined specification

add nfilgured Pusl peCcs

Specifications for push

M idd sp

[Add All Branches Spec

][Add ALl Tags Spec

J

Mode Source Ref

@

Click Add Spec.

Destination Ref

Force Update

3¢ Remove

Remove

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

176

Repo
User Guide

2 New Version (Recommended)

Push Ref Specifications
Select refz to push.

l“%_t

-

Add createfupdate specification
Source ref: Dastination ref:
b VI | v| g pdd Spec
#l
Add delete ref specification
Remote ref to delete; & v| 8 4dd spec
#dd predefined specification

Add Configured Push Specs [Add A1l Branches Spec J [Add A1l Tags Spec]
Specifications for push

Mode Source Ref Destination Ref Force Update Remove
g Update refs/heads/master refs/heads/master [l ﬁ

[l'orcn Update ALl Spacs] [| g Remowe All Specs
@ [<Baek || Hext> || _ Finish || Cenca |
6. Click Next. The Push Confirmation dialog box is displayed.
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 177

Repo
User Guide 2 New Version (Recommended)

Push Confirmation
Confirm following expected push result. hel

Filnaster: master [new branch]

ﬂessage Details

Repository https://codebub. ‘git_demo.git

DPush only if remote refs don't change in the mean time
[JShow final report dialog only when it differs from this confirmation report

@ Finish | [Cencel |
7. Click Finish.

Pushed to https:/, _ /wenchao523/ git_demo.git

Fllnaster: master [new branch]

Message Details

Repository https://codehub. ‘git_demo.git

8. Click OK.
Log in to the remote repository and check the submitted code.

2.11 More About Git

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 178

Repo
User Guide

2 New Version (Recommended)

2.11.1 Using the Git Client

Background

Prerequisites

Before using the Git client, you need to understand the workflow and master basic

operations, such as installing Git, creating and cloning repositories, adding,
committing, and pushing changes, creating, updating, and merging branches,

creating tags, and replacing local changes.

The Git client has been installed.

Usage Process

The following figure shows the basic process of using the Git client.

Install the Git cient

Confgure the Git cient

Create a repositony Dewelopers skip this step.

Clone a repository

Create a branch

Compie code

Add and commit changes

P ush changes o the
sener

Update and merge
branches

Update the local
repository

End

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

179

Repo
User Guide

2 New Version (Recommended)

Table 2-28 Procedure

Procedure

Description

Install the
Git client

Install the Git client for your operating system.
e Git for Windows

e Git for macOS X

e Git for Linux

Create a
repository

Create and open a new folder, and run the following command:
git init
A Git repository is created.

Clone a
repository

Run the following command to create a clone of a local
repository:

git clone /path/to/repository

If the repository is on a remote server, run the following

command:
git clone username@host:/path/to/repository

Local
repository
structure

There are three components in a local repository: working
directory, index, and HEAD.

e Working directory contains the files that you are working on.
e Index caches changes you have made.
e HEAD points to the latest commit.

Add and
commit
changes

Run the following command to add the changes to the index:
git add <filename>
git add *

Run the following command to commit the changes:
git commit -m "Code submission information"

The changes are committed to the HEAD but not to the remote
repository.

Push
changes

The changes are in the HEAD of the local repository. Run the
following command to push the changes to the remote
repository:

git push origin master

You can replace master with any other branch to be pushed.

If you have not cloned an existing repository, run the following
command to connect the local repository to a remote server
before the push:

git remote add origin <server>

Then push the changes to the added server.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 180

Repo
User Guide

2 New Version (Recommended)

Procedure

Description

Create a
branch

Branches enable you to develop features separately. When a
repository is created, the master branch is the main branch by
default. Develop features on other branches and then merge
them to the main branch after the development.

1. Create a branch named feature_x and check out the branch.
git checkout -b feature_x

2. Check out the main branch.
git checkout master

3. Push the main branch to the remote repository. (If the branch
is not pushed, the branch can be seen only in your local
repository.)
git push origin <branch>

4. Delete the created branch.
git branch -d feature_x

Update and
merge
branches

1. Run the following command to update the local repository to

the latest remote commits:

git pull

The remote changes are fetched and merged to your working
directory.

2. Run the following command to merge other branches to the
current branch (for example, the master branch):
git merge <branch>

NOTE
Automatic merges may fail and conflicts occur. In this case, you need
to modify these files to manually merge the conflicts.

3. After the modification, run the following command to add
your changes.
git add <filename>

4. Before the modification, you can run the following command

to compare the source and target branches.
git diff <source_branch> <target_branch>

Create a tag

You are advised to create tags for releases. For example, run the
following command to create a tag named 1.0.0:

git tag 1.0.0 1b2e1d63ff

1b2e1d63ff is the first 10 characters of the commit ID to be
tagged. Run the following command to obtain the commit ID:
git log

You can enter the first several characters of the commit ID as
long as it can distinguish the commit from others.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 181

Repo
User Guide

2 New Version (Recommended)

Procedure

Description

Replace local
changes

Run the following command to replace the unwanted local
changes:

git checkout -- <filename>

The files in the working directory are replaced by the latest
content in the HEAD. Changes added to the index and new files
are not affected.

To discard all local changes and commits, fetch the latest
commit from the server and reset the local main branch to the

commit.
git fetch origin
git reset --hard origin/master

2.11.2 Setting Password-Free Access via HTTPS

Background

The username and password are required each time you connect to CodeArts Repo
using the HTTPS protocol. However, Git can help you implement password-free
access with its credential storage. You are advised to install Git 2.5 or a later
version so that the function runs properly. The following describes the
configuration methods on different OSs:

Prerequisites

Setting Password-Free Access on Windows

Setting Password-Free Access on macOS

Setting Password-Free Access on Linux

The SSH keys and HTTPS password have been set.

You have to enter the username and password in CodeArts Repo each time
you use the HTTPS protocol to perform operations such as git clone, git fetch,
git pull, and git push.

Setting Password-Free Access on Windows

The following table describes how to set password-free access on Windows.

Issue 01 (2023-08-0

7) Copyright © Huawei Technologies Co., Ltd. 182

Repo
User Guide 2 New Version (Recommended)

Table 2-29 Setting password-free access on Windows

Method Description

Set the HTTPS [1. Set the Git authentication mode.

password on Open the Git client and run git config --global

the local credential.helper store.

computer 2. Run the Git command to clone or push code for the first

time, and enter the username and password as prompted.

3. Open the .git-credentials file. If the username and
password have been stored locally, the following

information is displayed:
https://username:password@***.*** *** com

Setting Password-Free Access on macOS
Install the osxkeychain tool to implement password-free access.

1. Check whether the tool has been installed.
git credential -osxkeychain
Test for the cred helper
Usage: git credential -osxkeychain < get|store|erase >

If the following information is displayed, the tool has not been installed.

git: 'credential -osxkeychain' is not a git command. See 'git --help'.

2. Obtain the installation package.
git credential -osxkeychain
Test for the cred helper
git: 'credential -osxkeychain' is not a git command. See 'git --help'.
curl -s -0\
https://github-media-downloads.s3.amazonaws.com/osx/git-credential-osxkeychain
Download the helper
chmod u+x git-credential-osxkeychain
Fix the permissions on the file so it can be run

3. Install osxkeychain in the directory where Git is installed.
sudo mv git-credential-osxkeychain\
"$(dirname $(which git))/git-credential-osxkeychain"
Move the helper to the path where git is installed
Password:[enter your password]

4. Use osxkeychain to set Git to the password-free mode.
git config --global credential.helper osxkeychain
#Set git to use the osxkeychain credential helper

(10 NOTE

The password needs to be entered the first time you perform Git operations. After
that, osxkeychain will manage the username and password, and you do not need to
enter password subsequently.

Setting Password-Free Access on Linux
Linux provides two password-free access modes:

e cache:

- Credentials are cached in memory and cleared after 15 minutes.
git config --global credential.helper cache
#Set git to use the credential memory cache

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 183

Repo
User Guide 2 New Version (Recommended)

- Set the expiration time in timeout, in units of seconds.
git config --global credential.helper 'cache --timeout=3600'
Set the cache to timeout after 1 hour (setting is in seconds)

° store:

Credentials are stored in a plain-text file (~/.git-credentials by default) in the
home directory on the disk. The credentials never expire unless you change
the password on the Git server. The content of the git-credentials file is as
follows:

https://username:password@*********** com

After saving the credentials in the preceding file, run the following command
to implement pass-free access:

git config --global credential.helper store

Troubleshooting
If the message SSL certificate problem: self signed certificate is displayed when
you download code using HTTPS, run the following command on the client:

git config --global http.sslVerify false

2.11.3 Using the TortoiseGit Client

Generating a PPK File

A PPK file is required for downloading and committing code on the TortoiseGit
client. Assuming that an SSH key pair has been generated on the Git client. The
methods to generate a PPK file are different in the following two scenarios:

e The Public Key Has Been Added to Ssh-key in CodeArts Repo

a. On theStart menu, search for and select PuttyGen.
b. Click Load.

E? PuTTY Key Generator ? *
File Key Conversions Help

Key
No key.

Actions

Generate a public/private key pair

Load an existing private key file | Load |

Save the generated key Save public ke Save private ke

Parameters

Type of key to generate:
BSA

() DSA () ECDSA () EdDSA () 55H-1 (RSA)
MNumber of bits in a generated key:
c. Select the id_rsa file in the directory where the SSH key pair is stored and
click Open.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 184

Repo
User Guide

2 New Version (Recommended)

MName

I id_rsa
Fl id_rsa

d. Click OK and select Save private key.

Date modified

2 PuTTY Key Generator ? *
File Key Conversions Help
Key
Public key for pasting into Open55H authorized_keys file:
ssh-sa AAAAB3Nza A
+ps ik fnjD4bJam.) RGdvae ZUGE//W5exH3dt M5Cjvwwe LiXh Kt
1/3p M 775 XEell7 dSu1H
+¥MmKdewuX/sTE SMNMYZYGE25k KBudwrge50oQg X HafH9ced
olyha7ldIFD%sYB1 ms2TRg W

Key fingerprint: | sshsa B nUoTtDGumK011m 1Cs |
Key comment : |rsa-imm |
Key passphrase: | |

|

Confirm passphrase: |

Actions

Generate a public/private key pair Generate

Load an existing private key file Load

Save the generated key Save public key
Parameters

Type of key to generate:

® RSA ODsA (O ECDSA (O EdDSA (O 55H-1 (RSA)
Mumber of bits in a generated key: 2048

e. Click Yes to generate a PPK file.

f. Save the file to the directory where the SSH key pair is stored.

MName Date modified

. id_rsa
P] id_rsa

Type

e The Public Key Has Not Been Added to CodeArts Repo

a. On theStart menu, search for and select PuttyGen.

b. Click Generate to generate a key, as shown in the following figure.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

185

Repo
User Guide

2 New Version (Recommended)

E PuTTY Key Generator
File Key Conversions Help

Key
Mo key.

Actions

Generate a public/private key pair
Load an existing private key file
Save the generated key

Parameters

Type of key to generate:
@ RSA ODsA

Mumber of bits in a generated key:

(O ECDSA

[—==—]

Load

(O SSH-1{R54)
2048

(O EdDSA

c. Click Save private key to save the generated key as a PPK file.

ﬁ’ PuTTY Key Generator
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:

? X

ssh+za AAAAB3Nza
+ps ik FnjDdbJam.)
1/3pMZ75eXEel7
+AMmKdewuX/sTE
olyha7ldIFD%sYEB1

Ll
iRGdvasZ UGS, W5exH3dt MGjvwwe LI Xhkt
d5u1H

SNMY ZYG525k KBudwrge500Qo X HzfH9ced
ms2TRg v

=nUo TtDGumK011m 1Cs

Key fingerprint: |ssh-rsa iR
Keycomment: |rsaireatEmRas
Key passphrase: |

Confim passphraze: |

Actions

Generate a public/private key pair
Load an existing private key file

Save the generated key

Parameters

Type of key to generate:
BSA

Mumber of bits in a generated key:

d. Click Yes to generate a PPK file.

ODsA () ECDSA

Generate
Load
(O EdDSA () 55H-1(R54)
2048

Save the file to the directory where the SSH key pair is stored.

MName

I':I <,

id_rsa

Creating a Git Version Repository

Type

File

Microsoft Publish...
PPK File

To create a repository for the first time, right-click in an empty directory on the
local computer and choose Git Create repository here....

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 186

Repo

User Guide 2 New Version (Recommended)
View >
Sort by >
Group by >
Refresh

Custornize this folder...

Paste

Paste shortcut

Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to b

@l Git Clone...

[Git Create repository here...

£ TortoiseGit >
Mew >
Properties

Cloning a Version Repository

1. Open the local Git repository directory (where the repository is created) and

choose TortoiseGit > Pull on the right-click menu.
2. Click Manage Remotes.

A" Ch\Users\aamt Sz T - Pull - TortoiseGit 4

Remote

8] Arbitrary URL:

Remote Branch: | master e

Options
[]5quash [INe Commit

[No East Forward [] Fast Ferward Only
[m] Tags
[®] Prune

[AutoLoad Putty Key Manage Remotes

[Launch Rebase After Fetch

3. Specify the URL, select the PPK file for the Putty field, and click OK.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

187

Repo
User Guide

2 New Version (Recommended)

v - * General
o Context Menu
(o} Context Menu 2
-&% Dialogs 1
£¥ Dialogs 2
--£% Dialogs 3
Colors 1
& Colors 2
& Colors 3
W Alternative editor
v 4P Git
& Remote
€ Credential
v & Hook Scripts
& lssue Tracker Integration
-@ Issue Tracker Config
v &) Icon Overlays
& lcon Set
~#) Overlay Handlers
v &) Network
@ Email
v - @, Diff Viewer
Y Merge Tool
~4F Saved Data
&, TortoiseGitBlame
2 TortoiseGitUDiff
& Advanced

Push Version Repository

& Remote

Remote:

ETTH—
URL:
Push URL:
Putty Key:
Tags:
[®] Prune

OK

origin | Rename
hitp:/ /R EPREPBLPRLPI

Reachable ~ [JPush Default

Cancel Apply Help

Configure the username, email address, and signature key ID (PPK file).
Right-click in the blank area and choose TortoiseGit > setting.

Select Git, and set Name and Email.

C\Users\i AEHRYGIT - Settings - TortoiseGit x
v - General 4 Git
+-42) Context Menu
J Context Menu 2 Config source
Dialogs 1 @) Effective | OlLocal << () Global << () System
Dialogs 2
-£# Dialogs 3 User Info
- Colors 1 Narne: | inherit
& Colors2
i ﬂ Colors 3 Email: e | inherit
L[l Alternative editor
v-‘} Git Signing key 1D: ‘ | inherit
: 4 Remote
& Credential Auto CrLf convert
M 5 Hook Seripts AutoCrlf: true SafeCrLf:
i@ lssue Tracker Integration = -)
L@ lssue Tracker Config
~ {g7) lcon Overlays QuotePath Prune
L@ lcon Set Save to:
“.-fg7) Overlay Handlers ’ Loz
~ -6 Metwork
L@ Email Edit Jocal .git/config Edit glgbal .gitconfig Edit systemwide gitconfig
~ -5, Diff Viewer
1! Merge Taol Edit .tgitconfig
-4 Saved Data
--f. TortoiseGitBlame View effective config
3 TortoiseGitUDiff
& Advanced
ok |[concel Apply Help

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

188

Repo
User Guide

2 New Version (Recommended)

(11 NOTE

If the push fails, run the following script to locate the fault and send the git.log file
generated to the technical support:

#!/bin/bash

this script will collect some logs for Coding.net

how to use

first enter your git reposiztory

then execute this bash, please make sure you have correct rights
echo "## git version ###H#H##A#HH##HH##HA##A" >> git.log

git version >> git.log

echo "## ping #####HRH#HHHHHBHHRH#HB#H#HHH" >> git.log

ping code******xxkikk com >> git.log

echo "## curl ¥k com ####A####AH" >> git.log

curl -v https://code********xxx*x com >> git.log 2>&1

echo "## ssh -VT git@************* com ##############" >> git.log
ssh -vT git@***********+* com >> git.log 2>&1

echo "## git pull ##############" >> git.log
GIT_CURL_VERBOSE=1 GIT_TRACE=1 GIT_TRACE_PACKET=1 git pull >> git.log 2>&1

2.11.4 Use Cases on the Git Client

2.11.4.1 Uploading and Downloading Code

1.

Ensure that the network connection is up and running.
Enter telnet *******ikkkkk com 22 on the client.

If command not found is displayed, the network cannot access CodeArts
Repo.
Check if the client is trusted by CodeArts Repo.

If the system prompts you to enter a password when you pull or push code,
check whether the public key has been added to CodeArts Repo.

If the public key has been added, run $ ssh -vT git@************* com to check
whether the trust relationship is established.

If the following information is displayed, the trust relationship is established.

Entering inter

> to GitLab,
client_input 1el_req: channel
client_input_channel_re

annel 0: f client

If the fingerprints of both parties are changed after the trust relationship is
established, a public key authentication error is reported during commit
attempts. In this case, perform the following operations:

a. Delete the lines related to *******¥****** com from the ~/.ssh/known_hosts
file.

b. Enter push, pull, or ssh -T git@******ikriiit com,
c. Enter yes when asked whether to trust the public key of the server.

The code download is successful. If the target branch of the push is protected,
the code fails to be pushed.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 189

Repo
User Guide 2 New Version (Recommended)

5. Contact the repository administrator to unprotect the branch. The code can
be pushed after the protection is canceled.

2.11.4.2 Committing Letter Case Changes in File Names to the Server

Background
When changes are made to the case of a file name and pushed to the server, the
server does not recognize the changes.
For example, a file named AppTest.java is renamed as apptest.java on the Git
client. When the change is pushed to the server, the name of the file in the remote
server is still AppTest.java.

Procedure

Run the following commands in sequence:

git mv --force AppTest.java apptest.java
git add apptest.java

git commit -m "rename"

git push origin XXX (branch name)

2.11.4.3 Setting the Line Ending Conversion

Background
Different operating systems may use different line endings. Therefore, if you open
a file created in an operating system different from yours, the file may be
displayed incorrectly. This problem may also occur when you use version control
systems.

Procedure

1. (Optional) By default, core.autocrlf is set to false in Git. Perform the
following operations to enable Git to identify and convert the line endings for
text files:

- On Windows

Set core.autocrlf to true. All text files in the local repository use LF line
endings whereas those checked out to the working directory use CRLF
line endings.

- On Linux

Set core.autocrlf to input. When files are imported to the local
repository, Git auto-converts line endings from CRLF to LF. No conversion
is performed when files are checked out from the local repository to the
working directory.

2. Set core.autocrlf to true to enable auto-conversion of line endings.
git config --global core.autocrlf true

2.11.4.4 Committing Hidden Files
Run git add.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 190

Repo
User Guide

2 New Version (Recommended)

(11 NOTE

e Do not use git add *, which instructs Git to ignore the hidden files.
e The file and directory names cannot contain special characters.

2.11.4.5 Pushing a File That Has Been Changed on the Server

Background

Procedure

A file push on the Git client will fail if the file is modified on the server, and the
following information is displayed.

git.exe push --progress "origin™ master:master

To git

1.% com:fdae56335080433a8298a5¢c72aed2fe6/ - _____..__..git
! [rejected] master -> master (fetch first)
error: failed to push some refs to 'git@E

1.5 f8i com: £daeS56335080433a8298a5c72aed2fed/ o . g1t "
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: te the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

1. Pull the latest code from the server.
git pull origin XXX (branch name)

2. Modify and push the code.
git push origin XXX (branch name)

2.11.5 Common Git Commands

Background

e Gitis a free and open-source distributed version control system. It can
manage projects of any size in an agile and efficient manner.

e With Git, you can clone a complete Git repository (including code and version
information) from a server to a local computer, create branches, modify and
commit code, and merge branches.

Commonly Used Commands

The following table describes the functions, formats, parameters, and examples of
common Git commands.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 191

Repo
User Guide

2 New Version (Recommended)

Table 2-30 Common Git commands

Comm Funct | Format

and ion

Par
ame
ter

Example

ssh- Gener
keygen | ate a
-t rsa key

ssh-keygen -
trsa -C
[email]

ema
il:

indi
cate
s an
ema
il

addr
ess.

Obtain the key file id_rsa.pub from
the .ssh folder in drive C.
ssh-keygen -t rsa -C
"devcloud_keyO1@XXX.com"

git Creat
branch |ea
branc

git branch
[new
branchname]

new
bra
nch
na
me:
indi
cate

the
nam
e of
the
new
bran
ch.

Create a branch:
git branch newbranch

git Delet
branch |ea
-D branc

git branch -D
[new
branchname]

new
bra
nch
na
me:
indi
cate

the
nam
e of
the
new
bran
ch.

Delete a local branch:
git branch -D newbranch

Delete a branch in the remote
repository:

git branch -rd origin/newbranch

Remove branches that have been
deleted in the remote repository:

git remote prune origin

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 192

Repo
User Guide

2 New Version (Recommended)

Comm
and

Funct
ion

Format

Par
ame
ter

Example

git add

Add a
file to
the

index

git add
[filename]

file
na
me:
indi
cate

the
nam
e of
the
file
to
be
add
ed.

Add a file to the index:
git add filename

Add all modified and new files to the

index:
git add .

gitrm

Delet
ea
local
direct
ory or
file

gitrm
[filename]

file
na
me:
indi
cate

the
nam
e of
the
file
or
dire
ctor
y to
be
dele
ted.

Delete a file or a directory:
git rm filename

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

193

Repo

User Guide 2 New Version (Recommended)
Comm | Funct | Format Par | Example
and ion ame
ter
git Clone | git clone Vers | Clone a jQuery repository
clone a [VersionAddr | ion git clone https://github.com/jquery/
remot | ess] Add jquery.git
e ress: . .
reposi indi | A directory is generated on the local
tory cate | computer. The name of the directory
s is the same as that of the cloned
the repository.
URL
of
the
rem
ote
repo
sitor
y.
git pull | Pull git pull - Pull the next branch from the remote
the [RemoteHost repository and merge it with the local
branc | name] master branch.
hin [RemoteBran git pull origin next:master
the chname]:
remot | [LocalBranch
e name]
reposi
tory
to the
local
comp
uter
and
merg
eit
with a
specifi
ed
local
branc
h

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

194

Repo

User Guide 2 New Version (Recommended)
Comm | Funct | Format Par | Example
and ion ame
ter
git diff | Comp | git diff - Compare the current branch with the
ares master branch:
files, git diff master
branc
hes,
direct
ories,
or
versio
ns
git Com | git commit - Add a commit message:
commit | mit git commit -m "commit message"
files
git Push | git push - If the remote branch name is not
push files [RemoteHost specified, the local branch is pushed to
to the | name] the remote branch that it tracked (The
remot | [LocalBranch two branches usually share a name).
e name] Such a remote branch will be created
reposi | [RemoteBran if it does not exist.
tory | chname] git push origin master
The local master branch is pushed to
the master branch in the remote
repository. If the latter does not exist,
it will be created.
git Merg | git merge bra | Assuming that the current branch is
merge |e [branch] nch: | the develop branch. The latest commit
branc indi | to the master branch is merged to the
hes cate | develop branch.
S git merge master
the
nam
e of
the
sour
ce
bran
ch

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

195

Repo

User Guide 2 New Version (Recommended)
Comm | Funct | Format Par | Example
and ion ame
ter
git Check | git checkout | bran | Check out the master branch:
checko |outa | [branchname | chn git checkout master
ut branc |] ame
h :
indi
cate
s
the
nam
e of
the
bran
ch
to
be
swit
che
d to.
git log | List git log - List all logs:
the git log --all
log
git Check | git status - git status
status the
status
git grep | Searc | git grep - Check whether there is any character
h for string containing hello:
a git grep "hello"
chara
cter
string
git Displa | git show - e git show v1
show y The revisions attached with the v1
object tag are displayed.
sor e git show HEAD
revisi Display the last commit of the
ons current branch.
e git show HEADA
Display the first parent of the last
commit of the current branch.
e git show HEAD~4
Display the ancestor four
generations prior to the last
commit of the current branch.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 196

Repo

User Guide 2 New Version (Recommended)
Comm | Funct | Format Par | Example
and ion ame
ter
git Com | git stash - e git stash
stash mand Saves and restores the work
s progress.
relate e git stash list
dto Lists all stashes.
stash .
s e git stash pop
Restore the latest stash and
remove it from the stash list.
e git stash apply
Restore the latest stash but not
remove it from the stash list.
e git stash clear
Clear all stashes.
git ls- View | git Is-files - e git Is-files -d
files files View deleted files
e git Is-files -d |xargs git checkout
Restore deleted files
git Perfor | git remote - e git push origin master:newbranch
remote | m Create the master branch in the
opera remote repository and push
tions changes to it.
on e git remote add newbranch
the Create the master branch in the
remot remote repository and push
e changes to it.
reposi i
tory e git remote show
List the number of remote
repositories
e git remote rm newbranch
Delete a new branch from the
remote repository
e git remote update
Update branches of all remote
repositories

2.11.6 Using Git LFS

Background

e Git Large File Storage (LFS) is supported on CodeArts Repo. It stores large file
such as music, images, and videos outside a Git repository while users can still
easily perform operations on these files as if they were within the repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 197

Repo
User Guide 2 New Version (Recommended)

The Git extension allows more repository space and faster repository cloning,
and reduces the impact of large files on the Git performance.

e If the size of a file to be uploaded exceeds 200 MB, use Git LFS.
e Get started with Git LFS:

- Installing Git LFS

- Configuring File Tracking

- Committing Large Files

- Cloning a Remote Repository Containing Git LFS Files

- More About Git LFS

Installing Git LFS

The following table describes the installation on different operating systems.

Table 2-31 Installing Git LFS

Operati | Installation Method

ng
System

Windows | Download and install Git 1.8.5 or a later version. Run the following

command in the CLI:
git Ifs install

Linux Run the following commands in the CLI:

$ curl -s https://packagecloud.io/install/repositories/github/git-Ifs/script.deb.sh | sudo bash
$ sudo apt-get install git-Ifs

$ git Ifs install

macOS Install the Homebrew software package management tool, and run

the following commands:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

$ brew install git-Ifs

$ git Ifs install

Configuring File Tracking

This section describes how to configure file tracking.

Table 2-32 Configuring file tracking

Scenarios | Method

Track Run the following command:
all .psd git lfs track "*.psd"
files

Track a file | Run the following command:
git lfs track "logo.png"

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 198

Repo
User Guide

2 New Version (Recommended)

Scenarios | Method

View Run git Ifs track or view the .gitattributes file.
tracked $ git fs track
files Listing tracked patterns

*png (.gitattributes)

*pptx (.gitattributes)
$ cat .gitattributes
* png filter=Ifs diff=Ifs merge=Ifs -text
* pptx filter=Ifs diff=Ifs merge=Ifs -text

Pushing Large Files

The .gitattributes file should be pushed to the repository along with the large
files. After the push, run git Ilfs Is-files to view the list of track files.

$ git push origin master

Git LFS: (2 of 2 files) 12.58 MB / 12.58 MB
Counting objects: 2, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 548 bytes | O bytes/s, done.
Total 5 (delta 1), reused 0 (delta 0)

To <URL>

<SHA_ID1>.<SHA_ID2> master -> master
$ git Ifs ls-files

61758d79c4 * <FILE_NAME_1>

a227019fde * <FILE_NAME_2>

Cloning a Remote Repository Containing Git LFS Files

Run git Ifs clone to clone a remote repository that contains Git LFS files to the
local computer.

$ git lfs clone <URL>

Cloning into '<dirname>'

remote: Counting objects: 16,done.

remote: Compressing objects: 100% (12/12),done.
remote: Total 16 (delta 3), reused 9 (delta 1)
Receiving objects: 100% (16/16),done.

Resolving deltas: 100% (3/3),done.

Checking connectively...done.

Git LFS: (4 of 4 files) 0B/ 100 B

More Operations

For details, see the https://git-Ilfs.github.com.

2.11.7 Git Workflows

2.11.7.1 Overview

Create a Git workflow or branching policy that works best on your development
scenarios for effective version control, project process management, and team
collaboration.

There are four common Git workflows. The following sections describe their
processes, advantages, disadvantages, and some usage tips.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 199

https://git-lfs.github.com/

Repo
User Guide

2 New Version (Recommended)

e Centralized workflow

e Feature branch workflow

e GitFlow (recommended)

e Forking workflow

Development teams can integrate CodeArts Repo and the workflow that suits
them best to efficiently manage code and secure code. This enables them to focus

more on service development to achieve continuous integration and delivery, and
fast iteration.

2.11.7.2 Centralized Workflow

The centralized workflow is suited to a development team that comprises around
5 members or has just migrated from SVN to Git. There is only one main branch
called master by default (trunk in SVN), which is the single entry point of changes.
However, this workflow is not recommended for teams who want to enjoy the
benefits of Git and team collaboration.

Process
Developers clone the master branch from the central repository to their local
computers, make changes to the code, and push changes to the remote master
branch.

Advantages
No branch interaction is involved.

Disadvantages

e Merge conflicts are frequent when the size of a development team is more
than 10 members. Much time is spent on conflict resolution.

e The master branch is unstable due to frequent pushes to it, making it difficult
to conduct integration tests.

Tips: Avoiding Conflicts and Unreadable Commit History

Before developing a new feature, developers must synchronize the local repository
to the central one so that they can work on the latest version. After the
development is complete, fetch updates from the central repository before
rebasing their own commits. In this way, the commits are applied on top of
changes that have been made and pushed to the central repository by other
developers. The commit history is linear and clear. The following figure shows an
example of the workflow.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 200

Repo
User Guide 2 New Version (Recommended)

Central repository

Local repository of developer A \

Developers A and B pull code from the central repository at the same time.
Developer A completes the work and pushes it to the central repository.

When ready to push commits, developer B needs to first run git pull -rebase
to apply commits on top of the changes made by developer A.

4. Developer B pushes the code to the central repository.

2.11.7.3 Branch Development Workflow

The core of the feature branch workflow is that every feature should be developed
on a separate branch pulled off the master branch. This creates a work silo for
every developer, ensures a stable master branch, and encourages team
collaboration.

Process

Before developing a new feature, each developer should pull a new branch from
the master branch and give it a descriptive name, for example, video-output or
issue-#1061, to clearly state its purpose. By pushing local feature branches to the
central repository, developers can share their code with each other without
merging code into the master branch.

Advantages

e Developers can create merge requests to have their code reviewed before
merge.

e Pushes to the master branch are less frequent.

Disadvantages

Only the master branch is used to incorporate changes. The instability of the
branch is further increased in large-scale development projects.

2.11.7.4 GitFlow

GitFlow is commonly seen in large-scale development projects. Each branch is
dedicated to a specific purpose and policies are made to regulate the interaction
between branches. The following figure shows the process of GitFlow.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 201

Repo

User Guide 2 New Version (Recommended)
Feature @ --@]
Develop @ @ @ @ @
L4
Release o0 ® @O
HotFix
L4 L]
Master
Process

Master branch

The master branch is the production branch where code is ready to deploy. It
is the most stable branch because changes cannot be directly pushed to it.
Developers can only merge other branches to the master branch. It is often
set as a protected branch by default, on which only the project maintainer can
operate.

Hotfix branch

It is a temporary branch created off the master branch for fixing urgent bugs
in a live production version. After the bug is fixed, the hotfix branch gets
merged into the master branch and tagged with a version number. The bug
fix also needs to be merged to the develop branch.

Develop branch

A develop branch is pulled from the master branch and used to merge
features. It contains all the code ready to release for integration and system
testing.

Release branch

When a new release is coming up, developers create a release branch from
the develop branch for release preparations, such as fixing minor bugs and
producing documents. Adding new features is not allowed. They should be
merged into the develop branch and wait for the next release. When the
preparation is complete, the release branch is merged into the master branch
and the commit is tagged with a version number. The changes made in the
release branch also need to be merged to the develop branch.

Feature branch

Feature branches are pulled from the develop branch for feature
development. When the development is complete, they are merged into the
develop branch. Feature branches do not interact with the master branch.

Developers add new features in either of the following ways:

Integrate features after reviewed by a dedicated approver.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 202

Repo
User Guide

2 New Version (Recommended)

Advantages

Disadvantages
[]

a. Developers push feature branches to the central repository in CodeArts
Repo.

b. Developers then create merge requests for merging the feature branches
into the develop branch, and assign the requests to the reviewer.

(11 NOTE

CodeArts Repo supports MRs. You can choose source branches and target
branches. Only repository administrators (project managers, repository creators,
and developers granted with repository management permissions) can accept
MRs.

c. The approver reviews the merge requests. If the requests are approved,
the feature branches are merged into the develop branch and deleted.
Otherwise, the approver should explain the reasons of rejections.

Integrate features after self-reviews.

a. Developers merge feature branches to the develop branch in the local
repository and delete the feature branches.

b. The local develop branch is then pushed to the central repository in
CodeArts Repo.

With a branch dedicated for release preparation, a development team can
develop new features for a future release on the develop branch while
improving the version for the upcoming release. Release is visualized, which
means team members can have a clear view of the release status in commit
graphs.

Hotfix branches, which can be seen as temporary release branches created off
the master branch, enable development teams to fix urgent bugs without
interrupting other works. You do not have to wait until next release but can
quickly deploy fixes to the production version.

Effective multi-branch mechanism allows for organized development process
especially for large-scale projects.

This workflow is more in line with the DevOps philosophies.

High learning thresholds.

Impact will be greater if development teams do not comply with their
specified workflow policies.

2.11.7.5 Forking Workflow

The forking workflow is suitable for outsourcing, crowdsourcing, crowdfunding,
and open source projects. One of the features that distinguish this workflow is
that every contracting developer has a personal public repository, which is forked
from the project public repository. Developers can perform operations on the forks
without the need of being authorized by the project maintainer. The following
figure shows the process of the forking workflow.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 203

Repo
User Guide 2 New Version (Recommended)

Push

Project public repository Project maintainer

Merge request

Personal publit repository

L o e e o o o] b — — = o

git clone

Contributor Contributor Contributor

Process

1. Developers fork the project public repository to create personal public ones.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 204

Repo

User Guide 2 New Version (Recommended)
2. The personal public repositories are cloned to their local computers for
development.
3. After the development is complete, developers push changes to their personal
public repositories.
4. Developers file merge requests to the project maintainer for merge to the
project public repository.
5. The project maintainer pulls changes to the local computer and reviews the
code. If the code is approved, it is pushed to the project public repository.
{11 NOTE
If the code written by a developer is not approved and therefore, not merged to the project
public repository, other developers can still pull the code from the personal public
repository of the developer for references.
Advantages
e Code collaboration is easier. Developers can share their code by pushing it to
their personal public repositories for others to pull, unlike some workflows
where developers cannot see others' work until it is merged into the project
repository.
e Project maintainers do not have to grant permissions on project public
repositories to every contributor.
e Merge requests serve as an important guard for code security.
e The three workflows introduced previously can be incorporated into the
forking workflow based on project requirements.
Disadvantages

It takes more steps and time before the code of developers gets merged into the
project repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 205

Repo
User Guide 3 Old Version

Old Version

Overview

Git Installation and Configuration

SSH Keys and HTTPS Passwords

Cloud Repository Creation

Cloud Repository Clone/Download to a Local Computer
Repository Migration

Cloud Repositories

Associating Cloud Repositories

Cloud Repository Management
Committing Code to the Cloud
Team-based Development on CodeHub
Member and Permission Management

More About Git

3.1 Overview

CodeHub is a distributed version management platform that uses the Git
workflow. It provides functions such as security management, member and
permission management, branch protection and merge, online editing, and
statistical analysis. The service aims to address issues such as cross-distance
collaboration, multi-branch concurrent development, code version management,
and security.

To start a new project, you can use CodeHub built-in repository templates to
create a repository for development. For details, see Starting an R&D Project in
the Cloud.

If you are developing a project locally and want to use CodeHub to manage
versions, you can migrate the project to the cloud. For details, see Migrating a
Local Project to the Cloud.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 206

Repo
User Guide

3 Old Version

Starting an R&D Project in the Cloud

You can use repository templates provided by CodeHub to create a project and
start development. The following figure shows the workflow.

Repository
administrator

r 3

Developer

Environment
preparation

Enable the service.

Create a repository
using a template.

Configure the
repository.

Configure the Git client.

Set an SSHHTTPS
password.

Clone/Download the
repository to the local
computer.

Routine Merge request
development review

Manage versions

ReVieW the merge
request.

Commit code
to the cloud.

Create branches.

Create a merge request.

The operations involved are as follows:

e Creating a Repository Using a Template

e Managing Repository Members

e Cloud Repository Management

e Git Installation and Configuration

e Cloud Repository Clone/Download to a Local Computer

e Managing Branches

e Managing Tags

e Committing Code to the Cloud

e Merge Request Approval

e Forking a Repository

Migrating a Local Project to the Cloud

To manage code versions of a locally developed project using CodeHub, you can
bind the local repository to a cloud repository and complete initial push. Then, you
can continue developing your project in the distributed version management
mode. The following figure shows the workflow.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 207

Repo
User Guide 3 Old Version

Environment Routine Merge request
preparation development review

‘ Create an empty Manage versions Mo cote
. repository. using tags. 9 .
Repository '

administrator

Configure the
repository.

Review the merge
request.

View commit records.

Initialize a local repository
using the Git client.

Commit code o
to the cloud. reate a merge request.

Create branches.

3

Developer

Set an SSH/HTTPS
password.

Bind the local repository
to a cloud repository.

Complete initial push.

The operations involved are as follows:

e Creating an Empty Repository

e Managing Repository Members

e Cloud Repository Management

e Git Installation and Configuration
e Associating Cloud Repositories

e Cloud Repository Clone/Download to a Local Computer
e Managing Branches

e Managing Tags

e Committing Code to the Cloud

e Merge Request Approval

e Forking a Repository

Distributed Version Management

There is a complete code repository on your local computer and in CodeHub
respectively.

All version information can be synchronized to the local computer for viewing.

You can commit code offline on the local computer and push the code to the
CodeHub repository when the network is connected.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 208

Repo

User Guide 3 Old Version
CodeHub
Version Database
Computer A Computer B
i versn | e
File ‘:Vem:\on 1 File
<)

Basic Workflow

Version 3 Version 3

Version 2 Version 2

Version 1 Version 1

-

-

CodeHub is a cloud repository service that uses the Git workflow.

Data in a Git local repository can be in one of the three statuses: modified,
staged, and committed. The file you modified in the repository is in the
modified state. You can run the add command to add the changes to the
local staging area. Then, the file is in the staged state. Run the commit
command to commit the changes to the local repository for management.
The corresponding version and version number are generated upon each
commit. You can switch and roll back a version based on the version number.
A version can have multiple branches and tags. Each branch, tag, or commit is
an independent version that can be checked out using the checkout
command.

As a cloud repository service, CodeHub not only has the basic features of local
Git repositories, but also serves as the remote repository of each local
repository and provides configurable security policies and authentication.

A CodeHub cloud repository interacts with a local Git repository in the
following scenarios:

- Clone: clones the branch in the remote repository to the local computer
as a local repository.

- Push: pushes changes in the local repository to the cloud repository.

- Fetch: fetches a version from the cloud repository to the working
directory.

- Pull: fetches a version from the cloud repository to the working directory
and tries to merge it into the current branch. If the operation fails, you
need to manually resolve the file conflict.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 209

Repo

User Guide 3 Old Version
CodeHub Local repository Staging area Working directory
pull
fetch/clone |
checkouté
add
commit

push

3.2 Git Installation and Configuration

3.2.1 Overview

CodeHub is a Git-based service. Git clients such as Git Bash or TortoiseGit must be
installed on local computers to connect to CodeHub. The following sections
describe how to install and configure Git Bash and TortoiseGit. Git for Windows,
Linux, and macOS are available.

If you have installed Git and configured the signature and email address, skip the
following sections:

e Installing Git Bash for Windows

e Installing TortoiseGit for Windows
e Installing Git for Linux

e Installing Git for macOS

{11 NOTE

GitHub Desktop is not supported in CodeHub.

3.2.2 Installing Git Bash for Windows

Git

Bash is a simple and efficient client on Windows for users who are familiar

with Git commands. If you are unfamiliar with Git commands, you can use
TortoiseGit by referring to Installing TortoiseGit for Windows.

1.

Install the Git Bash client.
a. Go to the Git Bash website and download the installation package for 32-
bit or 64-bit Windows.

b. Double-click the installation package. In the installation window
displayed, click Next for several times and then click Install.

Open the Git Bash client.

Click the Windows Start icon, enter Git Bash in the search box, and press
Enter to open Git Bash. You are advised to pin Git Bash to the Windows
taskbar.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 210

Repo
User Guide 3 Old Version

3. Configure the Git Bash client.

Enter the following commands in Git Bash to configure your username and

email address:
git config --global user.name "your username"
git config --global user.email "your email address"

Run the following command to view the configurations.
git config -l

(10 NOTE

e A username can contain letters, digits, and special characters. You are advised to
set the same username as that in CodeHub.

e The email address should be written in the standard format.

e The -global parameter in the commands indicates that the configurations apply to
all Git repositories on your computer. You can also set a different username and
email address for a specific repository.

3.2.3 Installing TortoiseGit for Windows

Tortoise is a better choice if you are not familiar with Git commands or you hope
to migrate code from an SVN client such as TortoiseSVN. TortoiseGit is a Windows
shell interface to Git as TortoiseSVN to SVN.

Prerequisite

1. Go to the TortoiseGit website and download the installation package for 32-
bit or 64-bit Windows.

2. Double-click the installation package. In the window displayed, click Next for
several times and then click Install to complete the installation. Click Finish
to run the tool.

3. In the first start wizard displayed, select a language, enter a Git.exe path (the
field is automatically filled with an available path if there is any), and
configure a username and email address. Keep the default values and click
Next till the settings are finished.

(Optional) Language Packs

TortoiseGit is installed in English by default. If you want to use a translated version
of TortoiseGit, go to the TortoiseGit website to download your desired language
packs.

Configuration

TortoiseGit also requires a key pair for authentication with the CodeHub server. To
generate a key pair, perform the following steps:

1. Click the Windows Start icon and search for PuTTYgen and open it. In the
displayed window, click Generate to generate a key pair.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 211

Repo
User Guide 3 Old Version

@ PUTTY Key Generator ? X
Eile Key Conversions Help

Key
Please generate some randomness by moving the mouse over the blank area.

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key

Parameters

Type of key to generate:
RSA DSA ECDSA EdDSA SSH-1{RSA)

Mumber of bits in a generated key: 204

(1 NOTE

PuTTYgen is a powerful, compact, and easy-to-use tool for generating pairs of public
and private keys. It is installed along with the TortoiseGit installation. PUTTY has its
own PuTTYgen in-built. No conflicts occur if you install and use both TortoiseGit and
PUTTY.

2. After the key pair is generated, store the public and private keys.

- Click Save private key. In the dialog box that is displayed, enter a file
name and save the private key file.

- Click Save public key. In the dialog box that is displayed, enter a file
name and save the public key file.

3. Copy the public key in the red box in the following figure and bind it to a
CodeHub repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 212

Repo
User Guide 3 Old Version

File Key Conversions Help

Key fingemprint :

Key comment: |rsa+:eg,--2D23D41 5 |

Key passphrase: | |

Corfirm passphrase: | |

Actions

Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key
Parameters

Type of key to generate:
i® RSA (IDSA (JECDSA () Ed25515 () 55H-1 {RSA)

Mumber of bits in a generated key:

4. Bind the private key to the local client.

Click the Windows Start icon and search for Pageant and open it. In the
displayed window, click Add Key, and select the generated private key file.

3.2.4 Installing Git for Linux

e For Debian or Ubuntu

Run the following command in the terminal:
apt-get install git

e For Fedora, CentOS, or Red Hat

Run the following command in the terminal:
yum install git

e For more OSs, see the Git official website.

3.2.5 Installing Git for macOS

e You can quickly install Git on macOS by installing Xcode command line tools.

e On Mavericks 10.9 or a later version, run the git command on the Terminal.
The system will prompt you to install the command line tools if you have not.

e If you want to install Git of a later version, go to the Git website and
download the latest version for macOS.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 213

Repo
User Guide 3 Old Version

3.3 SSH Keys and HTTPS Passwords

3.3.1 Overview

Introduction

When you push code to or pull code from a cloud repository, the cloud repository
needs to verify your identity and permissions. SSH and HTTPS are two
authentication modes for remote access to CodeHub.

e SSH Keys: An SSH key is used to establish a secure connection between your
local computer and CodeHub under your account.

After you configure an SSH key on a local computer and add the public key to
CodeHub, you can use the SSH key to access all code repositories under your
account from your computer.

Before connecting to CodeHub in SSH mode, generate an SSH key on your
computer and configure it in CodeHub.

e HTTPS Passwords: An HTTPS password is a user credential used for pulling
and pushing code using the HTTPS protocol.

Each developer needs to set a password only once, and the password takes
effect for all repositories in the project.

The maximum size of a package that can be pushed at a time using HTTPS is
500 MB. If the size is greater than 500 MB, use the SSH mode.

(11 NOTE

Either SSH or HTTPS can be used to push or pull code. Set SSH keys or HTTPS passwords as
required.

3.3.2 SSH Keys

Introduction

When you push code to or pull code from a cloud repository, the cloud repository
needs to verify your identity and permissions. SSH is an authentication mode for
remote access to CodeHub.

e An SSH key is an encrypted network transmission protocol that establishes a
secure connection between your computer and CodeHub under your account.

e After you configure an SSH key on a local computer and add the public key to
CodeHub, you can use the SSH key to access all code repositories under your
account from your computer.

e Before connecting to CodeHub in SSH mode, generate an SSH key on your
computer and configure it in CodeHub.

Generating and Configuring an SSH Key

The following procedure describes how to generate a public key and bind it.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 214

Repo
User Guide 3 Old Version

Step 1 Install the Git Bash client by referring to Installing Git Bash for Windows.
Step 2 Check whether your computer has generated a key.

Run the following command on the local Git client:

cat ~/.ssh/id_rsa.pub

e If No such file or directory is displayed, no SSH key has been generated on
the computer. Go to Step 3 to generate and configure an SSH key.

/d/gitTest

f.ssh/id_rsa.pub: Mo such file or directory

e If at least one group of keys is returned, an SSH key has been generated on
your computer. To use the generated key, go to Step 4 directly. To generate a
new key, go to Step 3.

Step 3 Generate an SSH private key.

Run the following command on the local Git client to generate a new SSH key:
ssh-keygen -t rsa -C "Your SSH key comment"

Perform the following operations. If information similar to the preceding figure is
displayed, the key is generated.

1. The system prompts you to enter the storage path of the key. You can press
Enter to use the default path.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 215

Repo
User Guide 3 Old Version

2. If a key already exists in the local path, the system asks you whether to
overwrite it. Enter n to cancel key generation, or enter y and press Enter to
overwrite the existing key. In this example, the existing key is overwritten.

3. The system prompts you to set a password for the key and confirm the
password. If you do not want to set a password, press Enter.

/A\ CAUTION
e |f a password is set (recommended), the generated private key file is stored
after being encrypted by AES-128-CBC.

e |f you press Enter without entering the password, the generated private key file
id_rsa is stored locally in plaintext. Keep it secure.

Step 4 Copy the SSH public key to the clipboard.

Run the following command locally based on your operating system to copy the
SSH public key to your clipboard. Take Windows as an example. If no command
output is displayed, the public key is copied.

e Windows:
clip < ~/.ssh/id_rsa.pub

¢ macOS:
pbcopy < ~/.ssh/id_rsa.pub
e Linux (xclip required):
xclip -sel clip < ~/.ssh/id_rsa.pub
Step 5 Log in to the CodeHub repository list, switch to your region, and click Set SSH
Key. The SSH Keys page is displayed.

Step 6 On the SSH Keys page, click Add SSH Key. The Add SSH Key page is displayed.

Step 7 In Title, enter a name for the new key, paste the SSH public key copied in Step 4
to the Key field, and click OK. A message is displayed, indicating that the
operation is successful.

(11 NOTE

e An SSH key cannot be added repeatedly. If an SSH key fails to be added, check whether
it has already been added or whether there are redundant spaces in the key.

e After the key is added, you can view it on the SSH Keys page. If it is no longer used, you
can delete it.

e The difference between an SSH key and repository deployment key is that the former is
associated with a user/computer and the latter is associated with a repository. The SSH
key has the read and write permissions on the repository, and the deploy key has the
read-only permission on the repository.

--—-End

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 216

Repo
User Guide 3 Old Version

Verifying Whether an SSH Key Is Bound

When an SSH key is bound, you can perform SSH-clone on the repository that you
have the access permission on the client. If the clone is successful, the key is
bound.

(1 NOTE

If you use SSH to clone a repository to the local computer for the first time, the message

"The authenticity of host *.*.com can't be established. RSA key... (yes/no)" is displayed. Enter
Yes to continue.

3.3.3 HTTPS Passwords

Introduction

When you push code to or pull code from a cloud repository, the cloud repository
needs to verify your identity and permissions. HTTPS is an authentication mode
for remote access to CodeHub.

e An HTTPS password is a user credential used for pulling and pushing code
using the HTTPS protocol. Each developer needs to set a password only once
and can use it for all repositories.

e Keep your HTTPS password secure and change it periodically to avoid security
risks.

Obtaining an HTTPS Password
Set the initial password upon the first login.
You can perform the following steps to change the HTTPS password at any time:

Step 1 Log in to the CodeHub repository list, switch to your region, and click Set HTTPS
Password. The HTTPS Password page is displayed.

Step 2 Click Change, reset the password, and save the settings.

--—-End

(11 NOTE

After the password is reset, regenerate a repository credential. Otherwise, you cannot
interact with the cloud repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 217

Repo
User Guide 3 Old Version

Verifying Whether an HTTPS Password Takes Effect

After setting an HTTPS password, you can perform HTTPS-clone on the repository
that you have the access permission on the client. A dialog box is displayed, asking
you to enter the account and password. If the clone is successful, the password is
configured.

Related Information
Regenerating a repository credential:
If a clone fails and the message The project you were looking for could not be

found is displayed, regenerate a credential and check the whitelist.

e If the password is incorrect, delete the local credential (for example, on
Windows, choose Control Panel > User Accounts > Manage Windows
Credentials > Generic Credentials), use HTTPS to clone the cloud repository
again, and enter the correct account and password in the dialog box that is
displayed.

e Check the IP address whitelist. If no whitelist is configured, all IP addresses
are allowed to access the repository. If a whitelist is configured, only IP
addresses in the whitelist are allowed to access the repository.

(11 NOTE

If "SSL certificate problem" is displayed, run the following command:
git config --global http.sslVerify false

3.4 Cloud Repository Creation

3.4.1 Overview

The total capacity of a single repository and LFS storage is 2 GB. Currently,
CodeHub provides the following repository creation methods:

e Creating an Empty Repository: You can create an empty repository in the
cloud and synchronize a local repository to that repository.

e Creating a Repository Using a Template: You can create a repository using a
CodeHub template when there is no local repository.

e Forking a Repository: You can fork a CodeHub repository, make changes to
the fork, and merge the changes to the source repository.

- Scenario 1: Carry out new projects based on historical projects without
damaging the repository structure of the historical projects.

- Scenario 2: Share projects of your organization with others.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 218

Repo
User Guide

3 Old Version

NOTICE

The capacity of a repository cannot exceed 2 GB. If the capacity exceeds 2 GB, the
repository cannot be used normally. The capacity cannot be expanded.

When the capacity of a repository exceeds the upper limit, the repository is frozen.
In this case, delete the repository, control the capacity locally, and push the
repository again.

Common Repository Settings

e Default Branch

e Commit Rules

e Merge Requests

e Protected Branches

e Configuring IP Address Whitelist
e More settings

3.4.2 Creating an Empty Repository

Step 1
Step 2

You can create an empty repository in the cloud and synchronize a local repository
to that repository. To create an empty repository on the CodeHub console, perform
the following steps:

Access the repository list page.

Click Create Directly. On the page that is displayed, enter basic repository
information.

Table 3-1 Parameters for creating an empty repository

Parameter | Ma | Remarks

nd
ato
ry
Repository | Yes | A name contains letters, digits, underscores (_), periods (.),
name and hyphens (-) and must start with a letter, digit, or
underscore ().
Project Yes | @ A repository must be in a project.

e If you create a repository in a project, the project is
selected for Project by default, and the Project parameter
is hidden on the repository creation page.

Descriptio | No | Enter the description of your repository.

n

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 219

Repo
User Guide 3 Old Version

Parameter | Ma | Remarks

nd
ato
ry
Programmi | No | The .gitignore file is generated based on your selection.
ng
Language
of .gitignor
e
Type No | Select a type for your repository content.

Permission | No | The options are as follows:

S e Allow project members to access the repository.

The project manager is automatically set as the repository
administrator, and the developer is set as a common
repository member. When the two roles are added to the
project, they will be automatically synchronized to
existing repositories.

e Allow generation of a README file.
You can edit the README file to record information such
as the project architecture and compilation purpose,
which is similar to a comment on the entire repository.

e Allow automated creation of a code check task.
After the repository is created, you can view the code
check task of the repository in the CodeCheck task list
after switching to the region where the repository is
located.

Visibility Yes | The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or commit
code.

e Public read-only
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results. You
can select an open-source license as the remarks.

Step 3 Click OK to create the repository. The repository list page is displayed.

--—-End

Associating with an Existing Directory or Repository

If you do not generate a README File when creating a common repository, you
can click the Files tab and click Create a README file to generate a README file
or associate the repository with an existing directory or repository. The procedure
is as follows:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 220

Repo
User Guide 3 Old Version

Figure 3-1 Associating with an existing directory or repository

fask1 (3 History

No data available.

Create a README file | or associate the repository with an existing directory or repository.

Associate This Repository with Existing Directories or Other Repositories

Run the following commands on the Git client. Learn how to install the Git client

d Git for macOS

Prerequisite

e You need to run following commands on the Git client. Install the Git client
and configure the Git global username and user email address. For details,
see Git Installation and Configuration.

e Set the SSH key. For details, see SSH Keys.

Procedure

(11 NOTE

The following commands have been automatically generated in the new repository. You can
copy them on the Files tab page of the repository.

Step 1 Clone the repository on the local host and push the new README file.

git clone HTTP_download address

cd taskecho "# Repository_name" > README.md.
git add README.md

git commit -m "add README"

git push -u origin master

Step 2 Associate an existing code directory with the repository.

cd <Your directory path>

mv README.md README-backup.md

git init

git remote add origin HTTP_download address
git pull origin master

git add --all

git commit -m "Initial commit"

git push -u origin master

Step 3 Associate with an existing Git repository.

cd <Your Git repository path>

git remote remove origin > /dev/null 2>&1

git remote add origin HTTP_download _address
git push -u origin --all -f

git push -u origin --tags -f

--—-End

3.4.3 Creating a Repository Using a Template

You can create a repository using a CodeHub template on the CodeHub console.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 221

Repo
User Guide

3 Old Version

Prerequisites

This operation must be performed in the Scrum template project.

Procedure

Step 1 Access the repository list page.

Step 2 Click ' next to Create Directly and select Use Template from the drop-down
list. The Template Repository page is displayed.

Step 3 On the Template Repository page, enter a keyword for fuzzy search and select a
template as required.

Step 4 Click Next. On the Create Repository page, enter basic repository information.

Table 3-2 Parameters for creating a repository using a template

S

Parameter | Ma | Remarks
nd
ato
ry
Repository | Yes | A name contains letters, digits, underscores (_), periods (.),
Name and hyphens (-) and must start with a letter, digit, or
underscore ().
Project Yes | @ A repository must be in a project.

e If you create a repository in a project, the project is
selected for Project by default, and the Project parameter
is hidden on the repository creation page.

Descriptio | No | Enter the description of your repository.
n
Permission | No | The options are as follows:

e Allow project members to access the repository.
The project manager is automatically set as the repository
administrator, and the developer is set as a common
repository member. When members of the two roles are
added to the project, they are added to the repository
member list by automatic synchronization. You can view
the list.

o Allow automated creation of a code check task.
After the repository is created, you can view the code
check task of the repository in the CodeCheck task list
after switching to the region where the repository is
located.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 222

Repo
User Guide 3 Old Version

Parameter | Ma | Remarks
nd
ato

Visibility Yes | The options are as follows:

e Private
The repository is visible only to repository members.
Repository members can access the repository or commit
code.

e Public read-only
The repository is open and read-only to all guests, but is
not displayed in their repository list or search results. You
can select an open-source license as the remarks.

Step 5 Click OK to create the repository.
Step 6 After the repository is created, the repository list page is displayed.

--—-End

(11 NOTE

When you create a repository by template, the repository type of the selected template will
be automatically configured for the repository.

The repository created using the template contains the repository file structure preset in the
template.

Automatically Creating a Pipeline

A pipeline can be automatically created when a repository is created using a
template. Note that the host used in CloudDeploy must be changed to the actual
environment so that the pipeline can be successfully executed.

Step 1 On CodeHub, click ﬂ next to Create Directly and select Use Template.

Step 2 On the Use Template page, set Automated Pipeline Creation to Yes in the
navigation pane to display templates that can be used to automatically create a
pipeline.

Automated Pipeline Creation
@ Al
ez

Mo

Step 3 Select a template as required, click Next, enter basic repository information, and
click OK.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 223

Repo
User Guide 3 Old Version

Step 4 After the repository is created, you can view the pipeline that is automatically
created on the pipeline list page displayed.

--—-End

3.4.4 Importing an External Repository

You can import a cloud repository to CodeHub or import a CodeHub repository
from a region to another region (see Backup). The imported repository is
independent of the source repository.

To import an external repository on the CodeHub console, perform the following
steps:

Step 1 Access the repository list page.

Step 2 Click ' next to Create Directly and select Import Repository from the drop-
down list. The Import Repository page is displayed.

7)), CodeHub
storage Space Used 252.301

Jze Template

o
[34]

Import Repository

-—

o eme e § e e A

NOTICE

e An external repository can be a Git remote repository (HTTPS) or SVN
repository.

e The source repository port can be 80, 443, or greater than 1024.

e Currently, GitHub, Gitee, GitLab, and SVN China source repositories are
supported. If the import using other types of source repositories fails, contact
technical support to check the source server whitelist.

Step 3 Enter the source repository path, and enter the username and password for
accessing the source repository. (This parameter is not required for open-source
repositories.)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 224

Repo
User Guide

3 Old Version

@ Set Basic Information

(/) Import Repository

Set Basic Information
Source Repository URL
Git -

Source Repository Access
@ Username and password not required

Username and password required

| have read and agree to the Privacy Statement and DevCloud Service Statement

Step 4 Click Next. On the Create Repository page, enter the basic information about the

repository.
Parameter | Ma | Remarks
nd
ato
ry
Repository | Yes | A name contains letters, digits, underscores (_), periods (.),
Name and hyphens (-) and must start with a letter, digit, or
underscore (_).
Descriptio | No | Enter the description of your repository.
n
Permission | No [The options are as follows:
S e Allow project members to access the repository
The project manager is automatically set as the repository
administrator, and the developer is set as a common
repository member. When the two roles are added to the
project, they will be automatically synchronized to
existing repositories.
Visibility Yes | The options are as follows:
e Private
Onl members of the repository can access the repository
or commit code.
e Public read-only
The repository is read-only to all visitors. You can select
an open source license as the remarks.
Branch Yes | You can choose to synchronize the default branch or all
branches of the source repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 225

Repo

User Guide 3 Old Version
Parameter | Ma | Remarks
nd
ato
ry
Schedule No | Select Schedule sync into repo.

e The default branch of the source repository is
automatically imported to the default branch of the new
repository every day.

e The repository becomes a read-only image repository and
cannot be written. In addition, only the branches of the
third-party repository corresponding to the default branch
of the current repository are synchronized.

(1] NOTE

You can synchronize branches manually. In addition, you can also schedule synchronization.
This setting cannot be changed after you configure it.

Step 5 Click OK to import the repository. The repository list page is displayed.

--—-End

(11 NOTE

e The timeout interval for importing a repository is 30 minutes. If the import times out,
use the clone/push function on the client.

e The Git LFS object is not imported.

3.4.5 Forking a Repository

Application Scenarios

You can fork a CodeHub repository based on an image repository, make changes
to the fork, and merge the changes to the source repository. Before changes are
merged, the changes of the fork or the source repository will not affect each other.

As shown in the following figure, fork is applicable to the development scenario
where a large-scale project contains multiple sub-projects. The complex
development process occurs only in image repositories and the project repository
(source repository) is not affected. Only new features that are completed can be
merged to the project repository. Therefore, forks can be considered as a team

collaboration mode.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 226

Repo
User Guide 3 Old Version

Project repository (source repository)

Fork Merge

Project maintenance
personnel

Subversion/Feature repository (image repository)

Git push

Git clone

Project participant ~ Project participant ~ Project participant

Git pull

Forking a Repository
Step 1 Access the repository list page.

Step 2 Find the target repository in the repository list, click the repository name to access
the repository, and click Fork.

Step 3 In the Fork Repository dialog box, select the project to which the fork belongs,
and enter the fork name.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 227

Repo
User Guide 3 Old Version

If Allow project members to access the repository is selected, the project
manager and developers of the project are added to the repository as the
administrator and common members of the repository, respectively.

Step 4 Click OK to fork the repository. The repository list page is displayed.

--—-End

Merging Changes of a Fork to the Source Repository
Step 1 Access the repository list page.

Step 2 Click a forked repository.

Step 3 On the Files tab page of the repository, click * next to the branch, select Create
File from the expanded items, edit the file name and content, and click Save.

Step 4 Switch to the Merge Requests tab page.

Step 5 Click Create Merge Request. The Create Merge Request page is displayed.

Create Merge Request

Select two different branches for update or creation
Source Branch

master

Target Branch

Step 6 Source Branch is the one that requests merging.
Target Branch is the one that merges content.

Step 7 Click Next. The page for creating a merge request is displayed. The subsequent
operation process is the same as that of branch merge review in the repository.

--—-End

(11 NOTE

A cross-repository merge request belongs to the source repository and can be viewed only
on the Merge Requests tab page of the source repository. Therefore, mergers and
reviewers must be members of the source repository.

3.5 Cloud Repository Clone/Download to a Local
Computer

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 228

Repo
User Guide 3 Old Version

3.5.1 Overview

In addition to Managing Repository Files in Console, the Git-based code hosting
service CodeHub also allows you to download repository files to a local computer.

There are three methods of cloning or downloading a repository to a local
computer for the first time:

e Using SSH to Clone a Cloud Repository to a Local Computer
e Using HTTPS to Clone a Cloud Repository to a Local Computer
e Downloading a Code Package on a Browser

3.5.2 Using SSH to Clone a Cloud Repository to a Local
Computer

Prerequisite

Your network can access CodeHub. For details, see Network Connectivity
Verification.

Cloning Code on the Git Bash Client Using SSH

This section describes how to use the Git Bash client to clone a cloud repository of
CodeHub to a local computer.

Step 1 Download and install the Git Bash client.
Step 2 Configure an SSH key.
Step 3 Obtain the repository address. (If there is no repository, create one.)

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to the cloud repository from the local
computer.

I Create Build Task % Fork: 0 %, Clone / Download

3]

‘aph Clone with SSH Clone with HTTPS

git@ 0. @

A Zip ~ targz A tarbz2 & tar

Step 4 Open the Git Bash client.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 229

Repo

User Guide 3 Old Version
Create a folder on the local computer to store the code repository. Right-click the
blank area in the folder and open the Git Bash client.

(10 NOTE
The repository is automatically initialized during clone. You do not need to run the init
command.
Step 5 Run the following command to clone the cloud repository:
git clone <repository_address>
repository_address in the command is the SSH address obtained in Step 3.
If you clone the repository for the first time, the system asks you whether to trust
the remote repository. Enter yes.
After the command is executed, a folder with the same name as the cloud
repository is displayed, and a hidden .git folder exists in the folder, indicating that
the repository is cloned.
Step 6 Run the following command to go to the repository directory:

cd <repository_name>

You will be taken to the master branch by default.

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:

e Check whether your network can access CodeHub.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@code********** com

The command output contains Could not resolve hostname code********** com: Name
or service not known, as shown in the following figure.

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeHub
console.

e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using SSH

Step 1

This section describes how to use the TortoiseGit client to clone a cloud repository
of CodeHub to a local computer.

Download and install the TortoiseGit client.

Step 2 Obtain the repository address. (If there is no repository, create one.)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 230

Repo
User Guide

3 Old Version

On the repository details page, click Clone/Download to obtain the SSH address.
You can use this address to connect to the cloud repository from the local
computer.

Step 3 Go to the local directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

View
Sort by
Group by
Refresh

S

Customize this folder...

Paste

Paste shortcut
Undo Rename
Git GUI Here
Git Bash Here

Ctrl+Z

Give access to

Git Clone...

Git Create repository here...
TortoiseGit

Mew

Properties

Step 4 In the dialog box displayed, paste the copied repository address to the URL field,

select Load Putty Key, choose the private key file, and click OK.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

231

Repo
User Guide

3 Old Version

" Git clone - TortoiseGit X
Clone Existing Repository L
URL: | ~ | Browse... |w
Directory: ‘ ‘ Browse...
(IDepth 1 (I Recursive [clone into Bare Repo [INo Checkout
[Branch [Origin Name CILrs
Load Putty Key | v|

From SVN Repository
[From SVN Repository

Trunk: | trunk Tags: | tags Branch: branches

From:] Username:

sl | e

Step 5 Click OK to start cloning the repository. If you clone the repository for the first

time, the TortoiseGit client asks you whether to trust the remote repository. Click
Yes.

Step 6 The cloning duration is affected by the repository size. The following figure shows

the cloning process.

&' Di\gitTest\yilia_test - Git Command Progress - TortoiseGit - a ot

[master (root-commit) c63cl88] welcome-~!

Success (188 ms @ 3/5/2020 4:84:51 PH)

i Push... |vi Abort

--—-End

Cloning a Repository on Linux or macOS Using SSH

After the environment is configured (see Installing Git for Linux or Installing Git
for macOS), the clone operations of the Git client on Linux or macOS are the
same as those in Cloning Code on the Git Bash Client Using SSH.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 232

Repo
User Guide 3 Old Version

3.5.3 Using HTTPS to Clone a Cloud Repository to a Local
Computer

Cloning Code on the Git Bash Client Using HTTPS

This section describes how to use the Git Bash client to clone a cloud repository of
CodeHub to a local computer.

NOTICE

The maximum size of a package that can be pushed at a time using HTTPS is 500
MB. If the size is greater than 500 MB, use the SSH mode.

Step 1 Download and install the Git Bash client.
Step 2 Configure an HTTPS password.

Step 3 On the CodeHub homepage, click the name of a repository in the repository list.
On the repository details page displayed, click Clone/Download, click Clone with
HTTPS, and copy the repository address.

{8 Create Build Task ¥ Fork: 0 & Clone / Download

Clone with 35H Clone with HTTPS

Step 4 Open Git Bash, navigate to the directory where you want to clone the repository,
and run the following command. For the first clone, enter the username (account
name/username) and HTTPS password.
git clone HTTP_download_address

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 233

Repo
User Guide 3 Old Version

ning into 'DevCloud’...

Tindows Security

Git Credential Manager for Tindors
Enter your credentials for

NOTICE

If the clone fails and the message SSL certificate problem is displayed, run the
following command:
git config --global http.sslVerify false

Step 5 After the username (account name/username) and HTTPS password are entered,
the repository is cloned.

Step 6 Run the following command to go to the repository directory:
cd <repository_name>

You will be taken to the master branch by default.

--—-End

(11 NOTE

If the git clone command fails to be executed, locate the fault as follows:

e Check whether your network can access CodeHub.
Run the following command on the Git client to test the network connectivity:
ssh -vT git@code********** com

The command output contains Could not resolve hostname code********** com: Name
or service not known, as shown in the following figure.

/codehub-01.git

e Check the SSH key. If necessary, regenerate a key and configure it on the CodeHub
console.

e Only PCs that enabled the IP address whitelist can be cloned on the Git client.

Cloning Code on the TortoiseGit Client Using HTTPS

This section describes how to use the TortoiseGit client to clone a cloud repository
of CodeHub to a local computer.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 234

Repo
User Guide 3 Old Version

Step 1 Download and install the TortoiseGit client.
Step 2 Configure an HTTPS password.

Step 3 On the CodeHub homepage, click the name of a repository in the repository list.
On the repository details page displayed, click Clone/Download, click Clone with
HTTPS, and copy the repository address.

&y Create Build Task % Forlc 0 & Clone / Download

Clone with S5H Clone with HTTPS

4 zip 4 targz 4 tarbz2 A tar

Step 4 Go to the directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

View >
Sort by >}
Group by > i
Refresh

Customize this folder...

Paste 3
Paste shortcut

Undo Rename Ctrl+Z
Git GUI Here

Git Bash Here

Give access to p
& Git Clone...
[T Git Create repository here... i
2 TortoiseGit b
Mew > F
Properties z

Step 5 In the dialog box displayed, paste the copied repository address to the URL field
and click OK.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 235

Repo

User Guide 3 Old Version
Clone Existing Repository
URL: ‘ | git@ - Pcom:Demo2d973 V‘ Browse.. |
Directory: ‘C:\Users 8 " Mo\ Demo29975 ‘ Browse...
[] Depth 1 [Recursive [Clone into Bare Repo [INo Checkout
[JBranch [] Origin Name
[/ Load Putty Key ‘ Ci\Users' o mflwpk V‘
From SVN Repository
[IFrom SVN Repository
Trunk: trunk Tags: tags Branch: branches
From: Username:
0K Cancel Help
Step 6 If you clone a repository on TortoiseGit for the first time, enter the username and
HTTPS password as prompted.
Step 7 Wait until the clone is complete.

--—-End

Cloning a Repository on Linux or macOS Using HTTPS

After the environment is configured (see Installing Git for Linux or Installing Git
for macOS), the clone operations of the Git client on Linux or macOS are the
same as those in Cloning Code on the Git Bash Client Using HTTPS.

3.5.4 Downloading a Code Package on a Browser

Step 1
Step 2
Step 3

In addition to clone, CodeHub also allows you to package and download the code
of a cloud repository to the local computer.

The downloaded code repository file is not associated with the cloud repository
and cannot be pushed back to the cloud repository.

The procedure is as follows:
Access the repository list page.
Go to your repository. (create one.)

Click Clone/Download. In the dialog box that is displayed, click the required code
package format.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 236

Repo
User Guide

3 Old Version

5y Create Build Task % Fork: 0 Clone / Download

[«

SH Clone with HTTPS

----End

(10 NOTE

e If an IP address whitelist is set for the repository, only hosts with whitelisted IP
addresses can download the repository source code on the page. If no IP address
whitelist is set for the repository, all hosts can download the repository source code on
the page.

e Currently, the zip, tar.gz, tar.bz2, and tar package formats are supported.
e The master branch of the cloud repository will be downloaded.

3.6 Repository Migration

3.6.1 Overview

This section describes how to migrate your repository to CodeHub. Select one of
the following migration solutions based on your repository storage mode:

Migrating an SVN Repository to CodeHub
Importing a Remote Git Repository to CodeHub
Uploading Local Code to CodeHub

3.6.2 Migrating an SVN Repository to CodeHub

Migration Method: Import on the Git Bash Client

Step 1 Obtain committer information of the SVN repository.

Use TortoiseSVN to download the repository to be migrated to the local host.

2. Go to the local SVN repository (KotlinGallery in this example) and run the

following command on the Git Bash client:
svn log --xml | grep "A<author" | sort -u | \awk -F '<author>' {print $2}' | awk -F '</author>' '{print
$1} > userinfo.txt

The userinfo.txt file is generated in the directory.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 237

Repo
User Guide

3 Old Version

Open the userinfo.txt file. You can view the information about all committers
who have committed code to the repository.

Git uses an email address to identify a committer. To better map the SVN
repository information to a Git repository, create a mapping between the SVN
and Git usernames.

Modify the userinfo.txt file. Each line should be in the format of svn_author =
git_author_nickname <email_address>.

EI userinfo. txtEd

1 admin = =xiehao <xiehao @ . COm>
2 fanghua = fanghua <fanghua @ . COm>
g Xiayan = ®Riayan «<Xiayan @ . COm>

Step 2 Create a local Git repository.

1.

Create an empty Git repository directory on the local host, and copy the
userinfo.txt file obtained in Step 1 to the directory.

Start the Git Bash client in the directory and run the following command to
clone a Git repository:

git svn clone <svn_repository_address> --no-metadata --authors-file=userinfo.txt --trunk=trunk --
tags=tags --branches=branches

The following table lists parameters in the command. Set the parameters as
required.

Parameter Description

--no-metadata Prevents the Git from exporting useless information
contained in the SVN.

--authors-file File that maps all SVN accounts to Git accounts

--trunk Main development project

--branches Branch projects

--tags Tags

After the command is executed, a Git repository is generated locally.

» This PC » DataDisk (D) » waorkspace » Git » admin

Fas

% KotlinGallery 2020/3/9 10:29

=| userinfo.tut 2020/3/9 10:0¢ 1KB

Run the following commands to go to the KotlinGallery folder and verify the

current Git repository branch structure:
cd KotlinGallery
git branch -a

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 238

Repo
User Guide 3 Old Version

§ cd KotlinGallery/

5/git branch -a

As shown in the preceding figure, all SVN directory structures are successfully
migrated in the form of Git branches.

Step 3 Correct local branches.

In Step 2, the git svn clone command is used to save the tags folder in the SVN
repository as a branch, which does not comply with the Git usage guidelines.
Therefore, before uploading tags to the remote repository, adjust the local
branches to comply with the Git usage guidelines.

1. Go to the local Git repository and run the following commands on the Git
Bash client to change the tags branch to appropriate Git tags:
cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/
rm -Rf .git/refs/remotes/origin/tags
git branch -a
git tag

i g1t branch -a

2. Run the following commands to change the remaining indexes under refs/
remotes to local branches:
cp -Rf .git/refs/remotes/origin/* .git/refs/heads/
rm -Rf .git/refs/remotes/origin
git branch -a
git tag

fadmin
fadmin
i git branch -a

rl.1_hotfix
trunk

§ git tag
ril.0
ri.1

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 239

Repo
User Guide 3 Old Version

3. Run the following commands to merge the trunk branch into the master

branch, and delete the trunk branch:
git merge trunk

git branch -d trunk

git branch -a

git tag

up to

§ git bran d tru
Deleted br 1 trunk bocfOd8) .
§ git branch -a
ri.1_hotfix
§ git tag

rl.0
ri.1

Step 4 Upload the local code.

1. Set the SSH key of the repository by referring to Overview.

2. Run the following commands to associate the local repository with the
CodeHub repository and push the master branch to the CodeHub repository:

git remote add origin <Codehub_repository_address>
git push --set-upstream origin master

After the push is successful, log in to CodeHub and view the master branch of
the repository on the Branches tab page.

3. Run the following command to push other branches from the local computer

to CodeHub:
git push origin --all

After the push is successful, the r1.1_hotfix branch is added to the repository,
as displayed on the Branches tab page.

4. Run the following command to push tags from the local host to CodeHub:
git push origin --tags

After the push is successful, the tags r1.0 and r1.1 are added to the
repository, as displayed on the Tags tab page of CodeHub.

--—-End

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 240

Repo
User Guide 3 Old Version

3.6.3 Importing a Remote Git Repository to CodeHub

Background
CodeHub allows you to import Git-based remote repositories.

Git-based remote repositories are cloud repositories hosted in storage services
such as GitHub.

Cloning the Git Repository to the Local host and Associating and Pushing It
to CodeHub

Clone the remote repository to the local host, and then associate and push the
repository to the cloud code hosting.

Step 1 Install and configure the Git client.
Step 2 Download a bare repository using the source repository address.
The following uses GitHub as an example:

1. Open and enter the address of the GitHub code repository in a browser.

2. Click Code on the right, choose the HTTPS tab, and click the Copy lcon on
the right.

/ DevCloud

<> Code ssues Pull requests Actions Projects Wik Securly tihts

Al n
README.md [Download

3. Open the Git Bash client on the local host, run the following command to
clone the repository to the local computer, and run the cd command to go to

the repository directory:
git clone --bare <source_repository_address>

Step 3 Associate the local repository with CodeHub and push it to CodeHub.

1. On the CodeHub homepage, click Create Directly. In the Permissions area,
do not select Allow generation of a README file.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 241

Repo
User Guide 3 Old Version

= Repository Name

Enter a name starting with a letter, digit, or underscore ()
Description
Enfer a description

You can add 500 more characters
Programming Language of .gitignore
--Select— -
Type
Android Console Gul Kunpeng (64-bit Arm) RESTAPI
ServiceStage Web server
Permissions

u Allow project members fo access the repository 0

[B Aiow generation of a README Tis |

Wisibility
-é- Private (Only members of the repository can access the repository and commit code.)

Public read-only (The repository is read-only for visitors, but not displayed in the repository list or search result for visitors.)

2. Go to the repository details page created in 1, click Clone/Download, and

click the Clone with SSH or Clone with HTTPS as required. Then, click O to
obtain the repository address.

In this example, the HTTPS address is used.
{8 Create Build Task % Fork: 0 &, Clone / Download

Clone with S5H Clone with HTTPS

4 zip 4 targz 4 tarbz2 4 tar

3. In the root directory of local source code, open the Git Bash client and run the
following command to push the local repository to the new repository:
git push --mirror <new _codehub_repository_address>
When the command is executed, the system prompts you to enter the HTTPS
account and password of the CodeHub repository. Enter the correct account
and password. (For details, see Obtaining an HTTPS Password.)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 242

Repo
User Guide 3 Old Version

% git push --mirror https:

Enumerating ob

ng object
bJ : 100

= [new branch] master -—>

If your source repository has branches and tags, they will also be pushed to
the CodeHub cloud repository.

--—-End

After the push is successful, check whether the migration is complete in the code
hosting cloud repository. (For details, see Repository List.)

3.6.4 Uploading Local Code to CodeHub

Background

CodeHub allows you to perform Git initialization on local code and upload the
code to a CodeHub repository.

Procedure

Step 1 Create an empty repository in CodeHub.
e Do not configure Programming Language of .gitignore.
e Deselect Allow generation of a README file.

Step 2 Prepare the source code to be uploaded on the local host.

e If the source code is from the SVN server, refer to Migrating an SVN
Repository to CodeHub.

e If the source code is not managed by any version control systems, run the
following Git command in the root directory of the source code (Git Bash is
used as an example):

a. Initialize a Git repository:
git init

top/GIT/task/.git/

b. Add the code files to the local repository:
git add *

c. Create an initial commit:
git commit -m "init commit"

Step 3 Set a remote server address for the local repository.

e If the Git repository is cloned from other systems, run the following command
to add a new remote repository:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 243

Repo
User Guide

3 Old Version

git remote add new git@** ***com:testtransfer/Repol.git ~ # (replace the part after new with the
repository address)

The repository address is displayed on the repository details page. The
following figure shows how to obtain the repository address.

3 Create Build Task % Fork: 0 % Clone / Download

; 1+ | Clone with SSH Clone with HTTPS

git@cod

]

4 zip A targz | | A tarbz2 A tar

If the Git repository is just initialized, run the following command to add a

remote repository named origin.
git remote add origin git@***.***.com:testtransfer/Repo1.git # (replace the part after origin with the
repository address)

Step 4 Push all code to the remote repository.

git push new master # (when the Git repository is cloned from other systems)
git push origin master # (when the Git repository is just initialized)

--—-End

3.7 Cloud Repositories

3.7.1 Repository List

The repository list is the entry to CodeHub.

You can create a repository, configure your SSH key or HTTPS password, and
obtain a repository address.

CodeHub

oo JE

nnnnnnnn

Create a repository. You can create a repository by Create Directly or Use
Template.

Set an SSH key.
Set an HTTPS password.
Configure an IP address whitelist.

Click ™ to follow a repository and the repository will be displayed on the top
of the list.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 244

Repo
User Guide 3 Old Version

3.7.2 Viewing Repository Details

In the repository list, click a repository name to go to the repository details page.
CodeHub provides abundant console operations.

On the top of the repository page, you can view the Creator, Created, Last
Updated, and Fork Relationship (Fork repository) of the repository.

The repository details page provides the following tab pages:

Table 3-3 Description

Page Function Description

Files File list of the repository. You can modify files online and view the
commit history.

Branches | Branch list of the repository. You can manage branches on the

console.
Tags Tag list of the repository. You can manage tags on the console.
Merge Manage branch merge requests.

Requests

Reviews | Check review records of merge and commit requests.

Activity | View the dynamic information about the repository.

Member | Manage repository members, for example, synchronizing members
s from the project by one click or changing the permissions of a
member.

Associat | List of associated work items. You can set the association with work
ed Work | items in ProjectMan to improve efficiency.
Items

Reposito | Visualized charts of repository commits, such as code contribution.

ry
Statistics

Commit | By viewing the graph of the repository commit history, you can
Graph clearly understand the code change history, including the merge
relationship between branches and committers.

Settings | Repository settings. Only the repository administrator and the
repository owner can view this tab page and configure settings.

In addition, the repository details page provides quick entries to the following
functions:

e Clone/Download: Obtain the SSH address and HTTPS address of the
repository or directly download the code compressed package.

e Fork: Display the number of forks of the repository. You can click this button
to create a fork.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 245

Repo
User Guide

3 Old Version

e Follow/Unfollow: Follow or unfollow the repository. Followed repositories are
displayed on the top of the repository list.

Activity in Last 3 Months Operation

i - Per Page, Total 30 Records n

3.7.3 Managing Repository Files in Console

Introduction

File List

CodeHub allows you to edit, trace, and compare file.

When you access the repository details page, the Files tab page is displayed by
default. You can switch to different branches and tags to view the files in the
corresponding version. The file list is displayed on the left, and the repository
name (the tab name is the name of the displayed file), History tabs are displayed
on the right.

g~ codehub © Greate Build Task % Fork: 0 . Clone / Download

The file list is displayed on the left of the Files tab of the repository details page.
The file list provides the following functions:
e Switching branches and tags to display the file directory of the corresponding

version

¥ master v

e C(lick Q to display the search box. You can search for files in the file list.

e Click T provides the following functions:
- Create File
- Create Directory

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 246

Repo
User Guide

3 Old Version

- Create Submodule
- Upload File
e Point to the name of a file. The button for renaming the file is displayed.

e C(lick a file name to display the file content on the repository name tab page
on the right. On this tab page, you can modify the file content and trace file
changes.

(1] NOTE

[‘]: file
= : folder

cE : Git submodule

Creating a File

Step 1
Step 2

Step 3

Step 4

Step 5

Creating a file on the CodeHub console is to create a file and run the add,
commit, and push commands. A commit record is generated.

The created file is added to the file list of the corresponding branch. You can view
the commit remarks and details on the repository name tab page.

Procedure:
Access the repository list page.

Go to your repository. (If there is no repository, create one.)

Click ™ next to the branch and choose Create File. The Create File area is
displayed. (Note that this step is to create a file under the branch.)

Click © next to the folder and choose Create File. The Create File area is
displayed. (Note that this step is to create a file in a folder under the branch.)

On the Create File page, enter related information as prompted.

Commit Message is equivalent to the -m message in the git commit command
and can be used for associating work items. For details, see Associating Work
Items.

Click OK to save the new file.
----End

Creating a Directory

Creating a directory on the CodeHub console is to create a folder structure, and
run the add, commit, and push commands. A commit record is generated.

The created directory structure (folder structure) is added to the file list of the
corresponding branch. You can view the commit remarks and details of each layer
on the repository name tab page.

A .gitkeep file is created at the bottom of the directory by default because Git
does not allow a commit of an empty folder.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 247

Repo
User Guide 3 Old Version

Procedure:
Step 1 Access the repository list page.
Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Click * next to the branch and choose Create Directory. The Create Directory
area is displayed. (Note that this step is to create a directory under the branch.)

Click * next to the folder and choose Create Directory. The Create Directory
area is displayed. (Note that this step is to create a directory in a folder under the
branch.)

Step 4 In the Create Directory dialog box, enter related information as prompted.
e Directories are divided into different levels by slashes (/).

e Commit Message is equivalent to the -m message in the git commit
command and can be used for associating work items. For details, see
Associating Work Items.

Step 5 Click OK to save the new directory structure.

--—-End

Uploading a File

Uploading a file on the CodeHub console is to create a file and run the add,
commit, and push commands. A commit record is generated.

Procedure:
Step 1 Access the repository list page.

Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Click * next to the branch and choose Upload File. The Upload File area is
displayed. (Note that this step is to upload a file under the branch.)

Click * next to the folder and choose Upload File. The Upload File area is
displayed. (Note that this step is to upload a file in a folder under the branch.)

Step 4 In the Upload File dialog box, enter related information as prompted.

e All file formats are supported. Only one file can be uploaded at a time. The
size of a file cannot exceed 10 MB. If the file size exceeds 10 MB, use the Git
client to push the file.

e Commit Message is equivalent to the -m message in the git commit
command and can be used for associating work items. For details, see
Associating Work Items.

Step 5 Click OK to upload the file.
----End

The uploaded file is added to the file list of the corresponding branch. You can
view the commit remarks and details of each layer on the repository name tab

page.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 248

Repo
User Guide 3 Old Version

Renaming a File

Renaming a file on the CodeHub console is to change a file name, and run the
add, commit, and push commands. A commit record is generated.

Procedure:

Step 1 Access the repository list page.

Step 2 Go to your repository. (If there is no repository, create one.)

Step 3 Point to a file in the file list on the left and click . The Rename File dialog box
is displayed.

Step 4 In the Rename File dialog box, change the file name and enter the commit
message.

Commit Message is equivalent to the -m message in the git commit command
and can be used for associating work items. For details, see Associating Work
Items.

Step 5 Click OK to change the file name.
----End

Viewing Repository Details on the Repository Name Tab Page
By default, the repository name tab page displays repository details.
=
P Cote Uptat o 15,2019 112557 T 610 —_

images CodeHub Updated Nov 13, 2019 11:25:57 GMT+08.00 65680007 - init

qitignore CodeHub Updated Nov 13, 2019 11:25:57 GMT+08.00 65e80c07 - init

It displays the following information:

File: name of a file or folder.
Update time: last update time of the file or folder.
Creator. creator of the last commit to the file or folder.

Commit message. message of the last commit to the file or folder (-m in the
commit command). You can click the message to display the commit record.

(11 NOTE

Commit messages are required for the edit and delete operations. They are similar to -m in
the git commit command and can be used for associating work items. For details, see
Associating Work Items.

Viewing Commit History of a Repository on the History Tab Page
The History tab page displays the commit history of a repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 249

Repo
User Guide 3 Old Version

On this page, you can perform the following operations on the commit history:

e Click a Commit Name to go to the commit details page.

e Click * to display the following extended functions:
- Create Branch.
- Create Tag:Tag this commit. (What is tag?).

- Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.
- Revert: undoing this commit

- Commit Records: View commit records.

Viewing File Details on the File Name Tab Page
By default, the file name tab page displays file details.

630 wH137563

property name="build.dir" value="build"/>
2 <property name="classes.dir" value="${build.dir}/clesses"/>
3 <property name="jr.cir" {build.dir}/jar" />
4 <property name="report.dir" value="${build.dir}/juritreport"/>
5 <taskdef rane="findbugs" classneme="edu.und. cs.findbugs.anttask. FinddugsTesk" >

<property name="fh.repor=.dir" value="§{build.dir}/*indbugs"/>

Table 3-4 Screen description

Screen Function Function Description

File Name of the file.

Updated Last update time of the file.

Creator Creator of the last commit to the file.

Full-Screen Full screen to view the file content.

Copy Code Copy the file content to the clipboard.

Download Download the file to the local
computer.

Edit Edit the file online.

Delete Delete the file.

Viewing Commit History of a File on the History Tab Page
The History tab page displays the commit history of a file.

——————

fix #61089645 530

uuuuuuuuuuuu

uuuuuuuuuuuu

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 250

Repo
User Guide 3 Old Version

On this page, you can perform the following operations on the commit history:
e C(lick a Commit Name to go to the commit details page.

e Click * to display the following extended functions:
- Create Branch.
- Create Tag: Tag this commit. (What is Tag?).

- Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.

- Revert: undoing this commit.
- Commit Records: View commit records.

Viewing and Tracing File Change History on the Blame Tab Page

The Blame tab page is located in the file details area. Click the target file. The
following figure is displayed.

B Blame SRSTRSNE

SUEERe00

W 630

On this tab page, a modifier corresponds to their modified content. You can click
the file name to view the commit details.

Comparison: Shows Commit Differences

The Comparison tab page is located in the file details area. Click the target file.
The following figure is displayed. You can select different commits to compare
differences.

CodeHub displays differences better than the Git Bash client.

pom.xml (2 History [E Blame ;1 comparison

< 9b552104 - Initial commit v o 97753dfc som.xml v

1 Kproject xmlns="http://maven.apache.org/POK/4.8.8" xmlns:xsi="http://w.u3.org/B8 1 Kproject xmlns="http://maven.apache.org/POM/.

2 <modelVersion>4.8.8</modelVersion> 2 <modelVersion>4.8.8</modelVersion>
<groupId>com. huawei .democ/groupTds 3 | <groupTdscom.huawei.demo</groupId>

4 <artifactId»javaMavenDemo</artifactId> 4 <artifactId>javaMavenDemo</artifactId>

(1 NOTE

The comparison result shows the impact of merging from the left repository version to the
right repository version on the files in the right repository. If you want to know the
differences between the two file versions, you can adjust the left and right positions,
compare them again, and learn all the differences based on the two results.

3.7.4 Viewing Activities

Access a repository and click the Activities tab page to view all activities of the
current repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 251

Repo
User Guide 3 Old Version

e All: This tab displays all operation records of the repository.
e Push: This tab displays all push operation records of the repository.

e Merge Request: This tab displays the operation records of all merge requests
of the repository. You can click the sequence number of a merge request to
view details.

e Review: This tab displays all review comments of the repository. You can click
the commit number to view details.

e Member: This tab displays management records of all members of the
repository.

(11 NOTE

The displayed information includes the operator, operation content, and operation time.

3.7.5 Viewing Review Records of a Repository

Access a repository and click the Reviews tab page to view the review information
about the repository.

Merge Requests

This tab displays all review records of merge requests. You can select a reviewer to
filter records.

Table 3-5 Parameter description

Parameter Description

Reviewer Reviews merge requests or comments on the merge requests.

Merge Merge request to which the review record belongs. You can

Requests click the merge request name to view the merge request
details.

Comments Review comments of the reviewer.

Time The date when the reviewer submits the review comments.

Requester Author of the review comment.

Commits

This tab displays all records submitted for review. You can select a reviewer to
filter records.

Table 3-6 Parameter description

Parameter Description

Reviewer Reviews commits.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 252

Repo

User Guide 3 Old Version
Parameter Description
Commit ID Sequence number of commits. You can click an ID to view
commit details.
Comments Review comments of the reviewer.
Time The date when the reviewer submits the review comments.
Requester Author who commits code.

3.7.6 Viewing Repository Statistics

On the Repository Statistics tab page in the repository details, you can view the
following repository statistics:

e Repository Summary: Displays the Repository Storage Used, LFS Used,
Branches (cloud repository), Tags (cloud repository), Members, and
Commits.

You can select a branch, and the statistical scope of Commit Trend,
Contributors, and Commit Overview will be changed. But the repository
summary will not be affected.

e Commit Trend: Displays the submission distribution of the current branch of
the repository.

e Contributors: Collects statistics on the contribution (number of submissions
and number of code lines) of code committers in the current branch.

e Commit Overview: Collects statistics on code submission activeness by
different dimensions (weekly, daily, and hourly).

3.7.7 Viewing the Commit Graph of a Repository

The commit graph of a repository displays the entire commit history (including the
action, time, committer, commit message generated by the system or specified by
the committer) of a branch or a tag and the relationship between commits in the
form of a flow chart.

You can click the drop-down list in the upper right corner to switch to another
branch.

You can click a commit node or a commit message to go to the details page of
the corresponding commit record.

Commit Graph

upaate 531

(10 NOTE

Compared with the History tab page under the Files tab page, the commit graph can
display the relationship between commits.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 253

Repo
User Guide 3 Old Version

3.8 Associating Cloud Repositories

If you have stored project files on the local computer, you need to initialize the
local project files as a Git repository and associate them with a cloud repository
provided by CodeHub before using CodeHub.

Prerequisites
You have installed the Git client and bound the SSH key of the Git client to
CodeHub.

Procedure

Step 1 Create a remote repository.

If you select gitignore based on your local code library, some non-development
files will be ignored and will not be managed in Git.

Step 2 Initialize the local repository to a Git repository.

Open the Git Bash client in your repository and run the following command:

git init

The following figure shows that the initialization is successful. The current folder is
the local Git repository.

Step 3 Bind the local repository to the cloud repository.

1. Go to the cloud repository and obtain the repository address.

2. Run the remote command to bind the local repository to the cloud repository:
git remote add <repository_alias> <repository_address>

Example:

git remote add origin git@*****/java-remote.git # Change the address to that of your repository.

By default, origin is used as the repository alias when you clone a remote
repository to the local computer. You can change the alias.

If the system displays a message indicating that the repository alias already
exists, use another one.

If no command output is displayed, the binding is successful.
Step 4 Pull the master branch of the cloud repository to the local repository.
This step is performed to avoid conflicts.
git fetch origin master # Change origin to your repository alias.
Step 5 Commit local code files to the master branch.

Run the following commands:

git add .
git commit -m "<your_commit_message>"

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 254

Repo

User Guide 3 Old Version
The following figure shows a successful execution.
~/Desktop 1w Code M a
sktop 110"
Step 6 Bind the local master branch to the cloud master branch.
git branch --set-upstream-to=origin/master master # Change origin to your repository alias.
If the following information is displayed, the binding is successful.
Acdmir ktop1iu'Code,Sq
Branch 'master’ set : Mot I aster' from 'origin’.
Step 7 Merge the files in the cloud repository and local repository and store them locally.
git pull --rebase origin master # Change origin to your repository alias.
The following figure is displayed, indicating that the merged repository has been
placed in the working directory and repository.
I:Ir"'l. I;I'I r; [T :
master -» FE
sed and updated ref
Step 8 Push the local repository to overwrite the cloud repository.

Run the push command directly because the repositories have been bound:
git push

After the operation is successful, pull the repository to verify that the version of
the cloud repository is the same as that of the local repository.

& cm S ~/Deskta r'l__-"'-l e __._: 7ess
¥ git push
Enumerating ob

m:Tiutes Sijava-remote.git

-/Desktop/1iu' Ct

3.9 Cloud Repository Management

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 255

Repo
User Guide 3 Old Version

3.9.1 General Settings

3.9.1.1 Repository Information

To view and modify the repository information, choose Settings > General
Settings > Repository Information on the repository details page.

The repository description, language, and type are remarks fields when the
template is open-source (public), facilitating search.

L] NOTE
Modifying Language does not affect the .gitignore setting of the repository.
Visibility
e Private: Only repository members can access the repository.

e Public read-only: The repository is read-only to all visitors. Visitors can access
the repository only through link sharing.

e Public: Set this parameter to a public sample template. The repository is read-
only and can be used as a template when users create a template repository.
You need to enter the title and author of the shared template.

3.9.1.2 Merge Requests

To configure merge requests, choose Settings > General Settings > Merge
Requests on the repository details page. The settings take effect only for the
repository configured. Only the repository administrators and owners can view this
tab page and configure merge requests.

Rules you set take effect in Merge Request Approval. The parameters are
described as follows:

Table 3-7 Configuration description

Item Description

Creators cannot | If this option is selected, creators cannot merge their own
merge requests. | branches.

Closed merge If this option is selected, the branch merge request cannot
requests cannot | be set back to the enabled status after it is closed.

be re-opened. This option is used for project process control to prevent

review history from being tampered with.

Merge after If this option is enabled, code cannot be merged until all
complete review comments marked as 'Must resolve' are addressed.
resolution

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 256

Repo
User Guide

3 Old Version

Item

Description

Delete source
branch after
merge

After the merge is successful, the source branch is deleted.

e The source branch set as a protection branch will not be
deleted.

e This setting does not take effect for historical merge
requests. Therefore, you do not need to worry about
branch loss.

Merge Method

Currently, Merge commit, Merge commit with semi-linear
history, and Fast-forward are supported. For details, see
the description on the Merge Requests page.

Merge
Mechanism

There are two types of mechanisms: Approval and Score.

NOTICE
By default, the Approval is used. You can manually switch to Score.

Merge Mechanism

1. Score: Code review is included. The minimum score can be set. The score
ranges from 0 to 5. Score and code review are gates that must be passed
before a merge can be accepted.

2. Approval: The Approval method consists of code review and merge approval.
Code can be merged only after the number of reviewers reaches gate
requirements. Click Create Policy to set a merge policy for a specified branch
or all branches in the repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 257

Repo
User Guide 3 Old Version

Create Policy

m

[}
]

O
¥

Name

Rules

Review before merge

Minimum number

n i

Table 3-8 Parameter description

Parameter Description

Branch Name You can select a specified branch or
all branches of the repository.

Review before merge If this option is selected, the adapted
branches can be merged only after
meeting all review rules.

Minimum number The value ranges from 1 to 5.

Reset reviewers after new push Reset reviewers when pushing data
to a source branch in a merge
request.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 258

Repo

User Guide 3 Old Version
Parameter Description
Select from these reviewers The range of reviewers can be
specified.
(1O NOTE

If the branch policy is not set, the approval information is not displayed in the merge
condition after a merge request is initiated.

- Rules: If you select Review before merging, reviewers can approve or

reject merge requests to meet higher code quality requirements.

- Rules: Select Pass pipeline gates. Before the merge, you need to pass all
pipeline gates. This rule integrates the pipeline into the code
development process.

3.9.1.3 Commit Rules

Code commit rules can be set in CodeHub to ensure code quality.

To set code commit rules, choose Settings > General Settings > Commit Rules

on the repository details page.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure code commit rules.

Table 3-9 Code commit rules description

Parameter

Description

Reject unsigned
commits

Only signed commits can be pushed to the repository.

Signature mode: Add the -s parameter when performing

the commit operation on the client.
git commit -s -m " <your_commit_message>"

You need to configure the signature and email address

on the client in advance.

Prevent tag
removal by git
push command to
delete tags on the
Git client, but can
delete tags on the
web Ul

Tags cannot be deleted by the git push command.
However, tags can still be deleted on the web Ul.

Prevent
committing secrets

For details, see Rejecting Encrypted Files.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

259

Repo
User Guide

3 Old Version

Parameter

Description

Prevent git push -f

Indicates whether users can run the git push -f
command on the client to push code.

git push -f indicates that the current local code
repository is pushed to and overwrite the cloud
repository.
In general cases, you are not advised using this
command.

Developers cannot
create branches.

A whitelist can be set to prevent developers not in the
whitelist from creating branches.

Developers cannot
create tags.

Indicates whether developers are forbidden to create
tags.

Allowed Commit
Submission
Information

Only commit messages that match the defined regular
expression rules, for example, Afix #[0-9]+, are allowed
to be pushed. If this field is left blank, any commit
message is allowed.

It is equivalent to a whitelist for committing messages.

Prohibited Commit
Submission
Information

Commit messages that match the defined reqular

expression rules, for example, Atest.+, are not allowed to
be pushed. If this field is left blank, any commit message

is allowed.
It is equivalent to a blacklist for committing messages.

Allowed Branch
Names

Only branch names that match the defined regular

expression rules, for example, Afeature-[0-9a-zA-Z]+, are

allowed to be pushed. If this field is left blank, any
branch name is allowed.

Prohibited File
Names

File names that match the defined regular expression

rules, for example, A\.exe, are not allowed to be pushed.

3.9.1.4 Notifications

CodeHub Notifications

To set merge requests, choose Settings > General Settings > Notifications on the

repository details page.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and

configure notifications.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

260

Repo
User Guide 3 Old Version

Notifications

Select who will receive email notifications when the repository is deleted.

When the repository is -) i
Eiﬁlﬁted' ’ Owner Administrator Developer Viewer No notifications
Capacity warning : Owner Administrator Developer Threshold: | 90% -

e When the repository is deleted: You can manually configure whether
notification emails will be sent to the repository owners, administrators,
developers, and viewers when a repository is deleted.

e Capacity warning: By default, this parameter is not enabled. You can
manually set the capacity warning threshold as required. When the capacity
of a single repository exceeds the threshold, the system emails the repository
owner, the administrator, and developers. The warning email is sent only once
unless the user updates the warning settings.

3.9.1.5 Repository Locking

When a new software version is ready for release, administrators can lock the
repository to protect it from being compromised. After the repository is locked, no
one (including the administrators) can commit code to any of its branches.

To lock a repository, choose Settings > General Settings > Repository Locking on
the repository details page.

Only the repository administrators and owners can view this tab page and
configure repository locking.

Repository Locking

When a new software version is ready for release, administrators can lock the repository to protect it from being compromised.
Adter the repository is locked, no one (including the administrators) can commit code to any of its branches.

3.9.1.6 Repository Synchronization

The Repository Synchronization option is available only for repositories created
by Importing an External Repository.

To synchronize a repository, choose Settings > General Settings > Repository
Synchronization on the repository details page.

Only repository administrators and owners can view this tab page and configure
the function.

You can click Synchronize Repository to resynchronize the default branch of the
source repository. If you have selected Periodically synchronize the default
branch of the source repository before importing external repositories, the
Scheduled Synchronization of Image Repository switch is displayed on the
Repository Synchronization tab page, as shown in the following figure.

e When the Scheduled Synchronization of Image Repository function is
enabled, the image repository is read-only for you and code cannot be
submitted or uploaded. The image repository refreshes content every hour to

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 261

Repo
User Guide 3 Old Version

synchronize code generated 24 hours ago. For example, if a user modifies the
default branch of the source repository at 10:00 today, the modified content
will be synchronized to the image repository at 10:00 tomorrow.

e If you disable the Scheduled Synchronization of Image Repository function,
you can edit the image repository. This function is removed from the page
and cannot be restored.

Repository Synchronization

Source Repository:https /codenub.devhoud.sa-brazik1 huaweicoud com/DomeD00i1 Aask110.gi

Click to synchionizz the repostory with a remo'e one

Scheduled Synchronization of Image Reposiory

When th timing synchronization funcion s tumed an.the code warshouse < read-anly and carnot submit/ upload code. A tuming offthe aulomaic synchionization, the code watefouse can bs writen, but the autamatic synchronization cannat be
Tesumed again

/A\ CAUTION

e The image repository takes effect only on the default branch. To update code of
other branches, manually change the default branch following instructions in
Default Branch.

e If the content of the source repository is synchronized to the current repository,
the code submitted by the current repository may be overwritten. As a result,
the code is lost.

3.9.2 Repository Management

3.9.2.1 Default Branch

The default branch is the branch selected by default when you enter the current
repository and is also the default target branch when you create a merge request.

To manage the default branch, choose Settings > Repository Management >
Default Branch on the repository details page.

When a repository is created, the master branch is used as the default branch and
can be manually adjusted at any time.

The settings take effect only for the repository configured.
Only the repository administrators and owners can view this tab page and set a
default branch.
3.9.2.2 Protected Branches
Protected branches have the following functions:

e Ensure branch security and allow developers to use merge requests to merge
code.

e Prevent non-administrators from pushing codes.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 262

Repo
User Guide 3 Old Version

e Prevent all forcibly push to this branch.

e Prevent anyone from deleting this branch.

On the Protected Branches page, you can configure a specified branch to limit it
using any of the following rules:

e Whether an administrator has the commit permission.

e Whether a developer has the commit permission.

e Whether an administrator has the merge permission.

e Whether a developer has the merge permission.

To configure protected branches, choose Settings > Repository Management >
Protected Branches in the repository details.

The settings take effect only for the repository configured.

Only the repository administrators and owners can view this tab page and
configure protected branches.

3.9.2.3 Submodules

Background

A submodaule is a Git tool used to manage shared repositories. It allows you to
embed a shared repository as a subdirectory in a repository. You can isolate and
reuse repositories, and pull latest changes from or push commits to shared
repositories.

You may want to use project B (a third party repository, or a repository developed
by yourself for multiple parent projects) in project A, and use them as two
separate projects. Submodules allow you to clone a Git repository as a
subdirectory into another Git repository while keeping commits separate.

The submodules are recorded in a file named .gitmodules, which records the
information about the submodules.

[submodule "module_name"] # Submodule name

path = file_path # File path of the submodule in the current repository (parent repository).
url = repo_url # Remote repository IP address of the submodule (sub-repository).

In this case, the source code in the file_path directory is obtained from repo_url.

Using the Console
e Creating a submodule
- Entry 1:
You can create a submodule on the Files tab page.

Click * and select Create Submodule, as shown in the following
figure.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 263

Repo
User Guide 3 Old Version

¥ master + | Q=] 230

(3 Create File

It

_ [s Create Directory
Images

1§ Create Submodule

T
gignore

530.md & Upload File]
T gitignore
- Entry 2

You can create a submodule in the repository settings.

Choose Settings > Repository Management > Submodules > Create
Submodule.

- Remarks:
You can use either of the preceding methods to Create submodule.
Configure the following parameters and click OK.

Table 3-10 Parameters of creating a sub-repository

Parame | Description
ter

Submod | Select a repository as the submodule.
ule

Submod | Select the target branch of the submodule to be
ule synchronized to the parent repository.
Branch

Submod | The storage path of the submodule in the parent repository.
ule Path | Use slashes (/) to separate levels, as shown in the following
figure.

Commit | Remarks for creating a submodule. You can find the
Messag | operation in the file history.
e

L] NOTE
After the creation is complete, you can find the submodule (sub-repository) in
the corresponding directory of the repository file list. The icon on the left of the
corresponding file is 08,

e Viewing, synchronizing, and deleting a submodule

Choose Settings > Repository Management > Submodules. On the
displayed page, repository administrators can view, synchronize, and delete
submodules.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 264

Repo
User Guide 3 Old Version

e Synchronizing deploy keys

If a submodule is added on the Git client, the repository administrator needs
to synchronize the deploy key of the parent repository to the submodule on
the Settings > Repository Management > Submodules page. In this way,
the submodule can also be pulled during the build of the parent repository.

Using the Git Client

Creating a submodule

git submodule add <repo> [<dir>] [-b <branch>] [<path>]
Example:

git submodule add git@***.***.com:****/WEB-INF.git

Pulling a repository that contains a submodule
git clone <repo> [<dir>] --recursive

Example:

git clone git@******.com:****/WEB-INF.git --recursive

Updating a submodule based on the latest remote commit
git submodule update --remote

Pushing changes to a submodule

git push --recurse-submodules=check
Deleting a submodule

Delete the entry of a submodule from the .gitsubmodule file.
Delete the entry of a submodule from the .git/config file.

3. Run the following command to delete the folder of the submodule.
git rm --cached {submodule_path} # Replace {submodule_path} with your submodule path.

(10 NOTE

Omit the slash (/) at the end of the path.

For example, if the submodule is stored in src/main/webapp/WEB-INF/, run git rm --
cached src/main/webapp/WEB-INF.

3.9.2.4 Webhook

Introduction to Webhook

Developers can configure URLs of third-party systems on the webhook page and
subscribe to events such as branch push and tag push of CodeHub based on
project requirements. When a subscription event occurs, you can use a webhook to
send a POST request to the URL of a third-party system to trigger operations
related to your system (third-party system), such as popping up a notification
window, building or updating images, or performing deployment.

If you want to email repository change notifications, you can configure
Notifications in General Settings.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 265

Repo
User Guide 3 Old Version

Setting Webhooks

To configure the webhook, choose Settings > Repository Management >
Webhooks on the repository details page.

The settings take effect only for the repository configured.

Only repository administrators and owners can view this tab page and configure
the function.

(10 NOTE

e A maximum of 20 webhooks can be created for a repository.

e You can configure a token when setting up a webhook. The token will be associated
with the webhook URL and sent to you in the X-Devcloud-Token header of a POST
request.

Events for Subscription

e You can select which events to listen to. CodeHub will send you POST requests
only when subscribed events occur. You can also change the subscribed events
on the Webhooks page.

e The following events can be selected:
- Push events
- Tag push events
- Merge request events
- Comment events

e Example: If you have subscribed to merge request events, CodeHub will send
a POST request to the configured webhook URL when a merge request is
created, closed, or reopened in the repository. You can then perform actions
based on the received information.

POST Requests
A POST request sent by CodeHub includes the following information:

headers:

Content-Length: 2294

Connection: keep-alive

Host: your.host.com

X-Devcloud-Event: Push Hook

Content-Type: application/json
X-Devcloud-Token: xxxxxxx (if configured)
body: (event details)

"object_kind": "push",

"event_name": "push", // Event type: push event in this example.

"before™: "01", // before and after fields record
the commit IDs before and after the action respectively.

"after": "0123456789012345678901234567890123456789",

"ref": "refs/heads/master", // Triggered branch

"checkout_sha": "0123456789012345678901234567890123456789", // Version that is checked out
when an event is triggered.

"message": "",

"user_id": 1234, // Operator information

"user_name": "example_user",

"user_username": "example_user",

"user_email": "example@huawei.com",

"user_avatar": null,

"user_id": 1234, // Project information of the triggered event

"project™: {

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 266

Repo
User Guide 3 Old Version

"id": 123456,
"name": "ExampleRepository",
"description": "This is an example repository",

"web_url": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/ExampleRepository",
"avatar_url": null,

"git_ssh_url": "git@codehub.devcloud.huaweicloud.com:ExampleNamespace/
ExampleRepository.git",

"git_http_url": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/
ExampleRepository.git",

"namespace": "ExampleNamespace",

"visibility_level": 0,

"path_with_namespace": "ExampleNamespace/ExampleRepository",

"default_branch": "master",

"ci_config_path": null,

"homepage": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/
ExampleRepository",

"url": "git@codehub.devcloud.huaweicloud.com:ExampleNamespace/ExampleRepository.git",

"ssh_url": "git@codehub.devcloud.huaweicloud.com:ExampleNamespace/ExampleRepository.git",

"http_url": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/
ExampleRepository.git"

’

"commits": { // Commit information of the triggered event
"id": "0123456789012345678901234567890123456789",
"message": "This is an example message",
"timestamp": "2019-05-30T08:50:372",
"url": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/ExampleRepository/commit/
0123456789012345678901234567890123456789",
"author": {
"name": "example_user",
"email": "example@huawei.com"
}'added": [
"src/main/java/HelloWorld.java"

1
"modified": [],
"removed": []

}

n

total_commits_count™: 1,

"repository": { // Repository information
"name": "ExampleRepository",

"url": "git@codehub.devcloud.huaweicloud.com:ExampleNamespace/ExampleRepository.git",
"description": "This is an example repository",
"homepage": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/ExampleRepository",

"git_http_url": "https://codehub.devcloud.huaweicloud.com/ExampleNamespace/
ExampleRepository.git",

"git_ssh_url": "git@codehub.devcloud.huaweicloud.com:ExampleNamespace/ExampleRepository.git",
"visibility_level": O
}
}

3.9.2.5 Space Freeing

With space freeing, you can free up storage space to increase the read and write
speed for the current repository by running background clean-up tasks, including
compressing files and removing unused objects. Space freeing is similar to the
garbage collect (gc) function in Git.

To enable space freeing, choose Settings > Repository Management > Space
Freeing on the repository details page.

Only the repository administrators and owners can view this tab page and
configure space freeing.

(11 NOTE

It is recommended that you perform this operation once every month.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 267

Repo
User Guide 3 Old Version

3.9.2.6 Backup

Repository backup has two modes:

e a: Back up the repository to another DevCloud region.

This mode imports a repository from a region to another region. For details,
see Importing an External Repository.

(10 NOTE

On the Huawei Cloud International Website, the networks of each site are isolated
from each other. Therefore, remote backup cannot be performed. Therefore, this
function is unavailable now.

e b: Back up the repository to your local computer.

You can use the HTTPS or SSH clone mode. The clone command is generated
as shown in b in the following figure. You only need to paste the command to
the local Git client and run it. (Ensure the repository connectivity.)

To configure remote backup, choose Settings > Repository Management >
Backup on the repository details page.

Only the repository administrators and owners can view this tab page and
have permissions.

Backup

Backup to Online Repository

Target region v n

Backup to Local PC

Use the Git command line to back up the complete repository: Using HTTPS

3.9.2.7 Copy Repository Settings

You can copy the settings of a repository to another repository in the same
project.

This function is used for a repository forked based on the repository because the
settings are not automatically copied during forking. For details, see Forking a
Repository

To configure copy repository settings, choose Settings > Repository Management
> Copy Repository Settings on the repository details page.

Only the repository administrators and owners can view this tab page and
configure copy repository settings.

Common Failure Causes
e Failed to copy commit rules: No commit rules are set for the source repository.

e Failed to copy default and protected branches: The branch names of the
source repository and target repository are different.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 268

Repo
User Guide

3 Old Version

3.9.3 Security Management

3.9.3.1 Deploy Keys

Step 1

Deploy keys allow you to clone repositories with read only access over SSH. They
are mainly used in scenarios such as repository deployment and continuous
integration.

The deploy key is the public key of the SSH key generated locally. However, the
deploy keys and SSH keys of a repository cannot be the same.

(1 NOTE

e Multiple repositories can use the same deploy key, and a maximum of 10 deploy keys
can be added to a repository.

e The settings take effect only for the repository configured.

e Only the repository administrators and owners can view this tab page and can configure
deploy keys.

To configure the deploy keys, choose Settings > Security Management > Deploy
Keys on the repository details page. The deploy key is a key that has only the
read-only permission on the repositories.

The settings take effect only for the repository configured.
Click Add Deploy Key to create a deploy key.

To generate an SSH key, perform the following operations:
Check whether your computer has generated a key.

Run the following command on the local Git client to display the SSH key:

cat ~/.ssh/id_rsa.pub

e If a message indicating that No such file or directory is displayed as shown
in the following figure, no SSH key has been generated on your computer. Go
to Step 2 to generate and configure an SSH key.

fd/gitTest

h/id_rsa. pub

rs/Twx f.sshfid_rsa.pub: No such file or directory

e If at least one group of keys is returned, an SSH key has been generated on
your computer. To use the generated key, go to Step 3 directly. To generate a
new key, go to Step 2.

~/Desktop/03_developer /Codedub_0009

Step 2 Generate an SSH private key.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 269

Repo

User Guide 3 Old Version
Run the following command on the local Git client to generate an SSH key:
ssh-keygen -t rsa -C "Your SSH key comment"

s/Administrator/.ssh/id_rsa):
dministrator/.s
nistrator/.ssh/i

Perform the following operations. If information similar to the preceding figure is

displayed, the key is generated.

e 1. The system prompts you to enter the storage path of the key. You can press
Enter to use the default path.

e 2. If a key already exists in the local path, the system asks you whether to
overwrite it. Enter n to cancel key generation, or enter y and press Enter to
overwrite the existing key. In this example, the existing key is overwritten.

e 3. The system prompts you to set a password for the key and confirm the
password. If you do not want to set a password, press Enter.

/A\ CAUTION
- If you press Enter without entering the password, the generated private
key file id_rsa is stored locally in plaintext. Keep it secure.
- If passphrase is set, the generated private key file is stored after being
encrypted by AES-128-CBC. (Recommended)
Step 3 Copy the SSH public key to the clipboard.

Run the following command locally based on your operating system to copy the
SSH public key to your clipboard. Take Windows as an example. If no command
output is displayed, the public key is copied.
e Windows

clip < ~/.ssh/id_rsa.pub
e macOS

pbcopy < ~/.ssh/id_rsa.pub

e Linux (xclip required)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 270

Repo
User Guide 3 Old Version

xclip -sel clip < ~/.ssh/id_rsa.pub
----End

3.9.3.2 Configuring IP Address Whitelist

About IP Address Whitelist

e [P address whitelists enhance repository security by restricting access to
repositories by IP address.

e Only access from whitelisted IP addresses is allowed.

IP address Whitelist Formats

IPv4 and IPv6 are supported. The following table lists the three formats of IP
address whitelists.

Table 3-11 IP address whitelist formats

Format Description

Single IP | This is the simplest IP address whitelist format. You can add the IP
address address of your computer to the whitelist, for example, 100.*.*.123.

IP address | If you have multiple servers and their IP addresses are consecutive

segment | or the IP address of your server dynamically changes in a network

segment, you can add the IP address segment, for example, 100.*.*,
0 to 100.*.*.255.

CIDR e When your server on a LAN uses the CIDR, you can specify a 32-
block bit egress IP address of the LAN and the number of bits for a
specified network prefix.

e Requests from the same IP address are accepted if the network
prefix is the same as the specified one.

e |n contrast, access from servers of other users in the same IP
LAN are intercepted because the network prefix is not the
specified one. For example: 100.**.11/12.

Configuring IP Address Whitelist

IP address whitelists can be created in the following levels:

(11 NOTE

The IP address whitelist can be configured only for repositories whose visibility is Private.
Repositories whose visibility is Public read-only or Public are not supported.

e IP Address Whitelist for Repository. It allows access only from IP addresses
in the whitelist to a specific repository. To set the whitelist, choose Settings >
Security Management > IP Address Whitelist for Repository. IPv4 and IPv6
addresses are supported. For details, see IP address Whitelist Formats.

e Personnel in the IP address whitelist are allowed to clone the Git client or
download the repository source code on the UL

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 271

Repo
User Guide 3 Old Version

(11 NOTE

If no IP address whitelist is configured, all IP addresses are allowed.

3.9.3.3 Risky Operations

To configure risky operations, choose Settings > Security Management > Risky
Operations on the repository details page.

Only the repository administrators and owners can view this tab page and
configure risky operations.

Risky operations are as follows:

e Transfer repository ownership: The ownership of a repository can be
transferred to another person in the repository but cannot be transferred to a
viewer or custom role.

e Delete repository: The repository cannot be recovered after being deleted.

e Rename repository: After renaming a repository, check the configuration
related to the repository name in a timely manner.

3.9.3.4 Operational Logs

To view operational logs, choose Settings > Security Management > Operational
Logs on the repository details page.

Only the repository administrators and owners can view this tab page.

You can query logs by operator, operation content, branch, or tag.

To view the impact of specific operations on files, see Commit Graph or Commit
History.

3.9.3.5 Watermarks

On the repository details page, choose Settings > Security Management >
Watermark. The watermark content consists of your account name and current
time.

Only repository administrators and owners can view this tab page and configure
the watermark function.

Watermarks will be displayed on code repository pages to reduce the risk of code
asset leakage.

Watermark

Watermarks protect your company's core assets. Use them fo deter and track dissemination by photos, screenshots, and ether unauthorized means

@

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 272

Repo
User Guide

3 Old Version

3.10 Committing Code to the Cloud

3.10.1 Creating a Commit

Background

Prerequisites

Procedure

Step 1

Step 2

In code development, developers usually clone the cloud repository to the local
computer to develop code locally, and the commit the code to the cloud repository
after completing the phased development task. This section describes how to use
the Git client to commit the modified code.

1. You have installed and configured the Git client. For details, see Git
Installation and Configuration.

You have created a repository in CodeHub. For details, see Overview.

You have set the SSH keys or HTTPS password. For details, see SSH Keys and
HTTPS Passwords.

4. You have cloned the cloud repository to the local host. For details, see
Overview.

Generally, developers do not directly develop code in the master branch. Instead,
they create a feature branch based on the master or develop branch, and develop
code in it. Then they commit the feature branch to the cloud repository, and
merge it into the master or develop branch. The preceding operations are
simulated as follows:

Go to the local repository directory and open the Git client. Take Git Bash as an
example. The principles and commands of other Git management tools are the
same.

Create a feature1001 branch based on the master branch, switch to the created
branch, and run the following command in the master branch:
git checkout -b feature1001 #Shown in 1 in the following figure.

This command creates a branch and then switches to the branch.

If the command is successfully executed, 2 in the following figure is shown. You
can run the Is command to view the files of the branch (as shown in 3 in the
following figure), which are the same as those of the master branch currently.

1001
'featurelool’

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 273

Repo
User Guide

3 Old Version

Step 3

Step 4

Step 5

Modify code in the feature branch (code development).

Git supports Linux commands. In this case, the touch command is used to create a
file named newFeature1001.html, indicating that the developer has developed
new features locally and a new file is added into the local code repository.

touch newFeature1001.html
Run the Is command again to view the created file.

Run the add and commit commands to add the file from the working directory to
the staging area, and then commit the file to the local repository. (For details, see
Overview.)

You can also run the status command to check the file status.

1. Run the status command. The command output shows that a file in the
working directory is not included in version management, as shown in 1 in
the following figure.

2. Run the add command to add the file to the staging area, as shown in 2 in

the following figure.
git add . # Period (.) means all files, including hidden files. You can also specify a file.

3. Run the status command. The command output shows that the file has been
added to the staging area and is waiting to be committed, as shown in 3 in
the following figure.

4. Run the commit command to commit the file to the local repository, as

shown in 4 in the following figure.
git commit -m " <your_commit_message>"

5. Check the file status again. If no file to be committed exists, the commit is
successful, as shown in 5 in the following figure.

" to include in what will be committed)
nothing added to commit but untracked files presen

£ git add .

" to unstage)

Push a local branch to the remote repository.

git push --set-upstream origin feature1001

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 274

Repo

User Guide 3 Old Version
Run the preceding command to create a branch that is the same as your local
feature1001 branch in the cloud repository, and associate them and synchronize
the branch.
origin indicates the alias of your remote repository. The default alias of a directly
controllable repository is origin. You can also use the repository address.

~/Desktop/1iu"Code/CodeHub_(
tream origin featurelOOl
ta compression
i [} ElhjE-:t
|::L i
L] NOTE

If the push fails, check the connectivity.

e Check the established SSH key pair. If necessary, regenerate a key and configure it on
the CodeHub console. For details, see SSH Keys.

e Check the IP address whitelist. If no whitelist is configured, all IP addresses are allowed
to access the repository. If a whitelist is configured, only IP addresses in the whitelist are
allowed to access the repository.

Step 6 View the branch on the cloud.
Log in to CodeHub and go to your repository. In the Files tab page, you can switch
to your branch on the cloud.
L] NOTE

If the branch you just committed is not displayed, your origin may be bound to another

repository. Use the repository address to commit the branch again.

Step 7 Create a merge request. For details, see Merge Request Approval. Notify the

reviewer to review the request and merge the new feature into the master or
develop branch.

--—-End

3.10.2 Transmitting and Storing a File in Encryption Mode

CodeHub uses git-crypt for encrypted storage and transmission of confidential and
sensitive files.

About git-crypt

git-crypt is a third-party open-source software that can transparently encrypt and
decrypt files in the Git repository. It can encrypt and store specified files and file
types. Developers can store encrypted files (such as confidential information or
sensitive data) and shared code in the same repository and pull and push them
like in a common repository. Only the person who has the corresponding file key

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 275

Repo
User Guide

3 Old Version

can view the content of the encrypted files, but others are not restricted to read
and write unencrypted files.

git-crypt allows you to encrypt only specific files without locking the entire
repository, facilitating team cooperation and ensuring information security.

Using Key Pairs for Encryption and Decryption on Windows

Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the
default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)
as an example.

Put the .exe file in the folder. You do not need to run it.

C:\Program Files\Githcm d|

B git

B git-crypt
git-gui
gith

B git-Ifs

4| start-ssh-agent

| start-ssh-pageant

Step 3 Generate a key pair.

1.

Open Git Bash and go to the local repository, as shown in 1 in the following
figure.

Run the following command to generate a key pair, as shown in 2 in the
following figure.

git-crypt init

Export the key file. In this example, the key file is exported to the C:\test
directory and named KeyFile. Run the following command, as shown in 3 in

the following figure.
git-crypt export-key /c/test/keyfile

MINGW6E4:/c/test/20201123 \;Ii-

% od 20201123

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 276

https://github.com/oholovko/git-crypt-windows/releases

Repo
User Guide

3 Old Version

Check whether the key is generated in the file path where the key is exported.
In this example, check whether the KeyfFile file exists in the C:\test directory,
as shown in the following figure.

Marne Date modified Type

. KeyFile 21, 022 11:01 Text Document

The computer containing the key file can decrypt the corresponding encrypted
file.

Step 4 Configure the encryption scope for the repository.

1. Create a file named .gitattributes in the root directory of the repository.
2. Open the .gitattributes file and run the following command to set the
encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt
Four examples are as follows:
FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.
*java filter=git-crypt diff=git-crypt # The .java file is encrypted.
G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.
ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.
git £ .gitattributes - Notepad| = | B [
ForTest File Edit Format View Help
FT FT/file0l filter=git-crypt diff=git-crypt
images *, java filter=git-crypt diff=git-crvpt
erc G filter=glt-crypt diff=git-crypt
o ForTest/*t filter=git-crypt diff=gzit-crypt
|| .gitattributes
|| .gitignare
| 1java
[Gito01.b
2| pom.xml
|| README.md
L] NOTE

e If the system prompts you to enter the file name when you create the .gitattributes
file, you can enter .gitattributes. to create the file. If you run the Linux command to
create the file, this problem does not occur.

e Do not save the .gitattributes file as a .txt file. Otherwise, the configuration does not
take effect.

Step 5 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 277

Repo
User Guide 3 Old Version

MINGW64:/c/test/20201123

attributes

ING: staged/committed versi

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to the
cloud. In this case, the encrypted files are pushed together.

Encrypted files are stored in the cloud repository as encrypted binary files and
cannot be viewed directly. If you do not have a key, you cannot decrypt it even if
you download it to the local computer.

(1 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 6 Decrypt the file.

1. Ensure that the git-crypt file exists in the Git installation path on the local
computer.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 278

Repo
User Guide 3 Old Version

ChProgram Files\Githcm d|

] it
B git-crypt
git-gui
gith:

B git-Ifs

| start-ssh-agent

| start-ssh-pageant

Clone the repository from the cloud to the local computer.

3. Obtain the key file for encrypting the repository and store it on the local
computer.

. System... » test

MNarme Date meodified Type

. KeyFile 21,03/2022 11:01 Text Document

Go to the repository directory and right-click Git Bash.

5. Run the decryption command. If no command output is displayed, the

command is successfully executed.
git-crypt unlock /C/test/KeyFile # Replace /C/test/KeyFile with the actual key storage path.

The encrypted Git001.txt file is used as an example. The following figures
show the file before and after decryption.

Figure 3-2 Before decryption

El Git001.txt - Notepad
File Edit Format WView Help

GITCRYPT 74E SDiEaIE%E. /52 wilIeA 2 75u 4768 7 THRKIE 20 TIFET Lo 3B 4T R |

Figure 3-3 After decryption

=l Git001.txt - Notepad

File Edit Format Wiew Help
GitGitG1t601i161t01161t01161t01161t011G1 011610116151t

--—-End

Encrypting and Decrypting a File in GPG Mode on Windows
Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 279

https://github.com/oholovko/git-crypt-windows/releases

Repo

User Guide 3 Old Version

default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)

as an example.

Put the .exe file in the folder. You do not need to run it.

. C\Program Files\Githcm d|

w7 gt
|] git-crypt
git-gui
githe
B git-Ifs
start-ssh-agent
start-ssh-pageant

Step 3 Download the GPG of the latest version. When you are prompted to donate the

open-source software, select 0 to skip the donation process.

0s Where Description
Windows Gpgdwin Full featured Windows version of GnuPG
download sig Simple installer for the current GnuPG
download sig Simple installer for GnuPG 1.4
Os X Mac GPG Installer from the gpgtools project

GnuPG for OS X Installer for GnuPG
Debian Debian site GnuPG is part of Debian
RPM rpmfind RPM packages for different OS
Android Guardian project Provides a GnuPG framework
VMS antinode.info A port of GnuPG 1.4 to OpenVMS

RISCOS home page A port of GnuPG to RISC OS

Double-click to start the installation. Click Next to complete the installation.

Step 4 Generate a key pair in GPG mode.

1. Open Git Bash and run the following command:
gpg --gen-key
2. Enter the name and email address as prompted.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

280

https://www.gnupg.org/download/

Repo
User Guide 3 Old Version

vare Foundation, Inc.
stribute 1t.

rator/.gnupg’ created
gnupg/pubring. kbx”’
or a full featured key

Real name: gpgTest
Email addr :
You selected th U
"gpgTest <gpgTest@huahua. com>

Change (N)ame, (E)mail, or (0)kay/(Quit?

3. Enter o as prompted and press Enter. The dialog boxes for entering and
confirming the password are displayed.

Pinentry >

Flease enterthe passphrase to
protect your new key

Passphrase: “

OK Cancel

The password can be empty. To ensure information security, you are advised
to enter a password that complies with the standard (this password is
required for decryption).

4. |If the following information is displayed, the GPG key pair is generated
successfully.

public and secret key created and signed.

2 2020-11-24 [SC] [expires:

072 2020-11-24

Step 5 Initialize the repository encryption.

1. Open Git bash in the root directory of the repository and run the following

command to initialize the repository:
git-crypt init

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 281

Repo
User Guide 3 Old Version

% cd 20201124

2. Run the following command to add a copy of the key to your repository. The
copy has been encrypted using your public GPG key.
git-crypt add-gpg-user USER_ID
USER_ID can be the name, email address, or fingerprint that uniquely
identifies the key, as shown in 1, 2, and 3 in the following figure in sequence.

public and secret key created and signed.

rsa3072 2020-11-24 [SC] [expires: 2022-11-24]
71EQAD
Test <gpgTest@huahua.com> g
[expires: 2022-11-24]

After the command is executed, a message is displayed, indicating that
the .git-crypt folder and two files in it are created.

MINGW64:/c/dev/test/20201124

el: pagp
n, Om, OFf, 1u

Step 6 Configure the encryption scope for the repository.

1. Go to the .git-crypt folder in the repository.

2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:

FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

* java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 282

Repo
User Guide 3 Old Version

keys .gitattributes - Notepad

L gitattributes File Edit Format View Help

Do not edit this file. To specify the files to encrypt, create your own
.zitattributes file in the directory where vour files are.

+ lfilter 'diff

*, zpz binary

FT/file0l. txt filter=git-crvpt diff=git-crypt

*, java filter=zit-crypt diff=zit-crypt

G* filter=git-crvpt diff=zit-crvpt

ForTest/+ filter=git-crypt Hiff=zit-crypt

3. Copy the .gitattributes file to the root directory of the repository.
Step 7 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

MINGW64:/c/dev/test/20201124

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to the
cloud. In this case, the encrypted files are pushed together.

Encrypted files are stored in the cloud repository as encrypted binary files and
cannot be viewed directly. If you do not have a key, you cannot decrypt it even if
you download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 283

Repo
User Guide

3 Old Version

Step 8 Export the key.

1.

3.

Lists the currently visible keys. You can view the name, email address, and
fingerprint of each key.
gpg --list-keys

Run the gpg --export-secret-key command to export the keys. In this

example, the gpgTest key is exported to drive C and named Key.
gpg --export-secret-key -a gpgTest > /c/key # -a indicates that the key is displayed in text format.

During the execution, the system prompts you to enter the key password.
Enter the correct password.

No command output is displayed. You can view the key file in the
corresponding directory (drive C in this example).

Send the generated key to the team members to share the encrypted file.

Step 9 Import the key and decrypt the file.

1.

To decrypt files on another computer, you need to download and install git-
crypt and GPG based on Git. For details, see the previous steps in this section.

Clone the corresponding repository to the local host.

Obtain the key of the corresponding encrypted file. For details about how to
export the key, see the previous step. In this example, the obtained key is
stored in drive C.

Go to the repository, open Git Bash, and run the import command to import
the key.

gpg --import /c/key

[c/Key is the key path and user-defined key name in this example. Replace them with the actual
ones.

During the import, the system prompts you to enter the password of the key.
If the import is successful, the following figure is displayed.

Run the unlock command to decrypt the file.

git-crypt unlock

During the decryption, a dialog box is displayed, prompting you to enter the
password of the key. If no command output is displayed after you enter the
correct password, the decryption is successful.

fo/fdewD0l

§ git-crypt unlock

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 284

Repo
User Guide

3 Old Version

Step 10 View the file before and after decryption.

Figure 3-4 Before decryption

File Edit Format View Help

Git001.txt - Notepad

GITCRYPT 74F DiEaifiE /

Figure 3-5 After decryption

File Edit Format Wiew Help

AR A AR 7o B 48R 2 THRIB 7 0 THF T 1 2R |

Git001.txt - Notepad

GitGit6itGitG1t6ite1tGIt61t61 161161161 t61tG1t01t61tGit]

--—-End

Application of git-crypt Encryption in Teamwork

In most cases, a team needs to store files that have restricted disclosure in the
code repository. It can use CodeHub, Git, and git-crypt to encrypt some files in
the distributed open-source repository.

Generally, Key pair encryption can meet the requirements of restricting the
access to some files.

When a team needs to set different confidential levels for encrypted files, the GPG
encryption can be used. This encryption mode allows users to use different keys
to encrypt different files in the same repository and share the keys of different
confidential levels with team members, restricting file access by level.

Installing git-crypt and gpg on Linux and macOS

Installing git-crypt and gpg on Linux

Linux installation environment

Software Debian/Ubuntu RHEL/CentOS Package
Package

Make make make

A C++11 compiler (e.g. | g++ gcc-c++

gcc 4.9+)

OpenSSL development | libssl-dev openssl-devel

files

In Linux, install git-crypt by compiling the source code.

Download the source code.

make
make install

Install git-crypt to a specified directory

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

285

https://github.com/AGWA/git-crypt

Repo
User Guide

3 Old Version

make install PREFIX=/usr/local
In Linux, install GPG by compiling the source code.

Download the source code.

.Jconfigure
make
make install

Install git-crypt using the Debian package.

You can download the source code.

The Debian package can be found in the debian branch of the project Git
repository.

The software package is built using git-buildpackage, as shown in the
following figure.

git checkout debian
git-buildpackage -uc -us

Install GPG using the build package in Debian.
sudo apt-get install gnupg

Install git-crypt and GPG on macOS.

Install git-crypt on macOS.

Run the following command to install git-crypt using the brew package
manager.

brew install git-crypt

Install GPG on macOSs.

Run the following command to install git-crypt using the brew package
manager.

brew install gpg

3.10.3 Viewing Commit History

CodeHub allows you to view details about the commit history and related file
changes.

You can view the commit history on the History tab page of the Files or Commit
Graph of a repository. You can click a commit record to view the committer,
commit number, parent node, number of comments, and code change
comparisons.

You can comment on a commit or reply a comment.

You can click the icon in the following figure to switch between horizontal and
vertical display of code change comparison.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 286

https://www.gnupg.org/download/index.en.html
https://github.com/AGWA/git-crypt

Repo
User Guide 3 Old Version

Settings

Change Display E

Ignore Space Changes

Click Show to view the full text of the documents involved in this submission.

3.10.4 Pushing Code to CodeHub Using Eclipse

Background

You can install EGit on Eclipse so that Eclipse can be connected with CodeHub and
be used for operations such as committing code from a local Git repository to a
remote one.

(11 NOTE

Only Eclipse 4.4 or later versions are supported.

e For the first push:
1. Create a repository on the local computer, that is, the local repository.
2. Commit the update to the local repository.

3. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

e [f it is not the first push:
1. Commit the modified code to the local repository.

2. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

Step 1: Installing EGit on Eclipse
Eclipse 4.4 is used in the following procedure.

1. On the Eclipse toolbar, choose Help > Install New Software....

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 287

Repo

User Guide 3 Old Version

ClearCase Window | Help

i @ Welcome
e o TR (7) Help Contents
&7 Search
Dynamic Help
:iu::rrq
Key Assist., Ctrl+Shift+L

Tips and Tricks...
Cheat Sheets...

Check for Updates
[Install New Software...]

About Eclipse SDK

2. In the Install window displayed, click Add....

= Install = || =R
Available Software
Select a site or enter the location of a site, 5y J'f

Work with: type or select a site &

Find mare software by warking with the ‘Available Software Sites' preferences,

e & Add Site =
| () Thed r
Name: | EGit Local... |
Locationt hitp:// sk RN up dates Archive... |
2 oK Cancel
Details
|¥] Show only the latest versions of available software Hide items that are already installed
[¥] Group items by category What is already installed?

[¥| Comact all update sites during install to find required software

3. Click OK. Then, click Next until the installation is finished.
Restart Eclipse after the installation.

Step 2: Configuring EGit on Eclipse

1. On the Eclipse toolbar, choose Window > Preferences > Team > Git >
Configuration.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd.

288

Repo
User Guide 3 Old Version

Set Key to a registered username.

;l' -

¥ Configuration

& Genaral -

@ Ant User Settings System Settinge Repositery Settimgs| =
Help

= Install/Update Loestion: C:\Dscumentsfy anfig

Aatematic Updates

Available Software 5i

Key Value
i# Jwrs) . =
& Run/Debug & Add a configuration entry ﬁ(

b
: 1'::‘ Add a configuration entry

® CVS Flease enter o key, ¢ ¢ “user nams” and a valuoe
File Content
=R

Commat Dialog Eey |user nane
Configaration
Confirmation Dial Yaloe
History
Label Decorations
Frojects
Synchronize | [][Canead
Findow Cache
Ignired Rescurces
Rodels
Usage Data Collector
Validation
& ML

x : [Besltrre nefanltsj- Lj_l?‘?ly]
@) Lo« J[coca |

2. Click OK.

user.email indicates the bound email address. If the user.name is not set
previously, set it in this step.

Configuration e v

User Settings |System Settings | Repository Settings|

Location: C:‘\Documents and Settingz\amzey\ gitconfig
Key Value Ei i
= mser
email " 3 com
Tame w 3

Step 3: Creating a Project and Committing Code to the Local Git Repository

1. Create the git_demo project and the HelloWorld.java class.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 289

Repo
User Guide

3 Old Version

5 Fackege Explorer O

= =B

= # src

_d. amo

- ecom. test
#-[J] HelloWerld java

=2, JEE System Library

i

Cn

5
=

=
oL
—
al L]
=
(s
—
o

(=1

R TR R

B

e

[jdkl. 6. 0_10
resources. jar - F:\Frogram §
rt. jar - F:‘\Program Files\J3
juze. jar = F:\Program Files
jea. jar = F:\Program Filesh]
charsets, jar - F:\Frogram Fi
dnzns. jar - F: '"Program Files
localedata, jar - F:'\Frogzram
F:'\Frg
sunmscapl. jar — F;\Frogram [

sunjce_provider. jar

emmnlkeeell dar - F A\Prasram |

[J] HelloWorld java I3 -

@ /wal]
package

com.Lest;

public class HelloWorld |

= public static woid main/(!

2. Share the git_ demo project with the local repository.
{4 Package Explerer E‘.; = [ml m HelloWorld. java 2
B%|e 7| ¢/O
= IE‘F naukme_:nm;jest:
=&
= Go Inte
‘HelloWorld {
Open in Hew Window
== ;
m Open Type Mierarchy Tt atic void main(String[]
Show In ALt+5hi £+ 4
=
& 55 Copy CtirliC
C: 5= Copy Qualified Hame
- 2&51;& CirltV¥
5
& x Delete Delete
E_"-_I'-:..--' I [JAK 1 £t
* Build Path v
. 9 Source ALt+Shi£445 L4
W g i
actor ALt+5hi £44T 4
W T4
u[mport. ..
ﬁﬁxpgrt. -
< Refresh s
Cloze Froject
Assign Workang Sets. ..
Run A= »
Debug As »
¥alidate)
Compare With 4JF ™y 2
. Share Project,
Restore from Local History. ..
3. In the Share Project window displayed, select Git.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

290

Repo
User Guide

3 Old Version

& Share Project E'
Share Project S
Select the repository plugz-in that will be used to share the selected project. @

Select a repozitory type:
o
B CYs

4. Click Next. The Configure Git Repository dialog box is displayed.

& Configure Git Repository

Configure Git Repository
Select repository location

Eﬂse or crea# repository in parent folder of project

Project Location

Repository
V|t gat_dem E:\study\tools\eclipseiworkspace\git_demo gt
¥ dem E:\study\tools\eclipse\work \git_d

L Finish I l Cancel J

5. Click Create Repository to create a Git repository.

The directory is in the untracked status, indicated by a question mark (?).
Choose Team > Commit... to commit code to the local repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 291

Repo

User Guide 3 Old Version
[[Package Explorer 53 = O|(3] HelloWorld java X
=] G:l..) - @ /=] 3 Commit
o - — : swrexw || package c rom Upstrean
Hew M & - .
Go Into
. " Remote 4
Open Type Hierarchy F4 m— vy b
Show In ALt+5hi £r+Y L4
|2 Copy Ctrl+C ¢ Full
5= Copy Qualified Wame #| Synchronize Workspace
Lt Baste Ctrl+V¥ &2 parge Tool
¥ Delete Delete £
T Merge. ..
#% BRemowe from Context trlt+al t+Sha f1+Down
Build Path »
Source ALt+Shi £145 b =
1 Refactor Al t+Shy £14T L4 Create Patch. ..
ly Fatch. ..
S Apply Fatc
13 Export. .. B | Lgnore
f" Refresh FS = Add to Imdex
Cloze Project % Remove from Index
Assign 'Hucrlcing Sets, .. EG Untrack
Bun As r {[)) Show in Repositories Yiew
Debug As 4 ﬁ_l Show in History
Validate
I} Disconnect
Compare With v T

6. In the Commit Changes dialog box displayed, set the commit message.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 292

Repo
User Guide

3 Old Version

& Commit Changes

Commit Changes to Git Repository

Commit message _5‘ I
[First submission
Anthor: | T N 3e com? |
Committer: il 3 L i@ com? |
Bl
Status Path
[¥ [.claszpath i
O % .project
= t;.'_;, bin/comftest/HelloWorld class
[srefcomftest/Helloforld. java
Fush
[[JPush the changes to upstresm
®] I Cancel
Click Commit to commit the code to the local repository.
| @ git_demo master]
= Hﬁ com. Ltest
[+ D} Hello®orld. java
ystem Library [jdkl 6.0_1C
+ E resources, jar = F \Frogzram [
* I'_‘.—'_’; rt. jar - F:'\Program Files'Js
+ E‘; jsse. jar - F:\Program Files!
B jee jar - F:\Program Files\]
+ Dﬂ; charsets. jar — F:"\Program Fi
& Iqu dnsns. jar — F:'\Frogram File:
IE localadata. jar = F "Frogram
& o sunjce_provider, jar - F'\FPro
H @; sunmscapi. jar - F:'\Program I
(o sunpkesll. jar - F:'Frogram I
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 293

Repo
User Guide

3 Old Version

Step 4: Committing Code in the Local Repository to the Remote Git

Repository

Create a repository in CodeHub.
Go to the repository details page and copy the repository URL.
Choose Team > Remote > Push... to push the code to the remote repository.

[§ Package Explorer [= O || [J] HelloKorld. java &
Bl | B /=]) Commit. . Ctrl+#
=K J package c
T Hew »
Go Into

id <) Fetch From..

Open in Hew Window

3

Open Type Hierarchy F4

Show In ALtHShi FLHY y Adzanced P G Feteh from Gerrit...
3 Push to Gerrit. ..
Pull <
D Copy Ctrléc yo i
B2 Copy Qualified Heme Synchronire orkspace
B Paste Ctrley
3 Delete Delete ¥
% Merge. ..
= Reset. ..
Enild Fath ™
| Sewse ALLASh £14S | FeslRbess.,
i Refactor AL t+5hi £44T » Create Patch. .
Apply Fatch
gig Inport. .. o x
£ Export. ..) Ignore
& Refresh Fs g8 Add to Index
Cloge Project ", Remowe from Index
Assign Working Sets... & Untrack
B ks *| @ Show in Repositories View
»
Debug As =) Show in Hastory
Yalidate
I - 0= conmnect
Compare With b {
Replace ¥ith v

Set related parameters in the Push to Another Repository window.
Click Next. The Push Ref Specifications dialog box is displayed.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 294

Repo

User Guide 3 Old Version
Push Ref Specifications GI
Select refs to push
lzg‘

Add createfupaate specification

Source ref: Destination ref:
9

Irefs/iéadsfmaster v| |refs/heads/master v| 5 Add Spec I

Add delete ref specification

Bemote ref to delete: -l V| M idd spec

Add predefined specification

Add Configured Push Specs [Add All Branches Spec] [Add ALl Tags Spec I

Specifications for push

Mode Source Ref Destination Ref Force Update Remove
F jpdate A1l S _;'1-,., e All Specs

®

5. Click Add Spec.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 295

Repo
User Guide 3 Old Version

Push Ref Specifications

Select refz to push. lué%’
-
Add createfupdate specification
Source ref: Dastination ref:
5 V; v| e jdd Spec
" |

Add delete ref specification

Remote ref to delete: & v| W Add spec

#dd predefined specification
Add Configured Push Specs [Add A1l Branches Spec J [Add A1l Tags Spec]

Specifications for push

Mode Source Ref Destination Ref Force Update Remove
g Update refs/heads/master refs/heads/master | [l ﬁ

[l'orcn Update ALl Spacs] [| g Remowe All Specs

@ [<Baek || Hext> || _ Finish || Cenca |

6. Click Next. The Push Confirmation dialog box is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 296

Repo
User Guide 3 Old Version

Push Confirmation
Confirm following expected push result. L

Filnaster: master [new branch]

Hessage Details

Repository https://codebub. ‘git_demo.git

[[JPush only if remote refs don’t change in the mean time
[JShow final report dialog only when it differs from this confirmation report

|'_?) t Finish } [Cancel]

7. Click Finish.

Pushed to https:/, _ /wenchao523/ git_demo.git

Finaster master [new branch] -

Message Details

Repository https://codehub. ‘git_demo.git

8. Click OK.
Log in to the remote repository and check the submitted code.

3.11 Team-based Development on CodeHub

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 297

Repo
User Guide

3 Old Version

3.11.1 Managing Branches

Introduction

GitFlow

Branch is the most commonly used management method in the version
management tool. Branches can be used to isolate tasks in project development
from each other so that they do not affect each other. Before releasing a version,
you can use the Branch Merging to integrate the tasks.

When you create a CodeHub or Git repository, a master branch is generated by
default and used as the branch of the latest version. You can create custom
branches at any time for personalized scenarios.

As a branch-based code management workflow, GitFlow is highly recognized and
widely used in the industry. It is recommended for you to start team-based
development.

GitFlow provides a group of branch usage suggestions to help your team improve
efficiency and reduce code conflicts. It has the following features:

e Concurrent development: Multiple features and patches can be concurrently
developed on different branches to prevent intervention during code writing.

e Team collaboration: In team-based development, the development content
of each branch (or each sub-team) can be recorded separately and merged
into the project version. An issue can be accurately detected and rectified
separately without affecting other code in the main version.

e Flexible adjustment: Emergency bug fixes are developed on hotfix branches
without interrupting the main version and sub-projects of each team.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 298

Repo
User Guide 3 Old Version

Table 3-12 Suggestions on using GitFlow branches

Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to
h Other
Branc
hes
master | Core Long | Created Never | ¢ When | _ _
branch | - when the
, term | the project
which project versio
is used reposito nis
togeth ry is frozen,
er created the
with develo
tags p or
to releas
archiv e
e branch
histori are
cal merge
versio d into
ns. this
Ensure branch
that .
all . o After
versio bugs
ns are found
availa in the
ble. releas
ed
versio
n are
fixed,
hotfix
branch
es are
merge
d into
this
branch

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 299

Repo

User Guide 3 Old Version
Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to
h Other
Branc
hes
develo | Main Long | Created | Not o After e Wh | _
p develo | - after the | reco new en
pment | term | master mme featur a
branch branch nded es are ver
, is develo sio
which created. ped, nis
is used featur to
for e be
routin branch rele
e es are ase
develo merge d,
pment d into this
and this bra
must branch nch
always . is
be the e When me
branch a new rge
with versio d
the n int
latest starts o
and to be the
most develo rele
compl ped, ase
ete the bra
functio last nch
ns. versio .
n e Wh
(releas en
e or a
master ver
branch sio
) is nis
merge to
d into be
this arc
branch hiv
ed,
this
bra
nch
is
me

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 300

Repo
User Guide 3 Old Version

Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to

h Other
Branc
hes

rge
d
int
o
the
ma
ster
bra
nch

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 301

Repo

User Guide 3 Old Version
Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to
h Other
Branc
hes
feature | Featur | Tem | e Creat | Devel | After a After | After
_N\2\3.. | e pora ed oped | child new the
. develo | ry based | when | feature featur | correspo
pment on being | branch is | es are | nding
branch the creat | develope | develo | features
, devel | ed. d and ped are
which op tested, it | and accepte
is used branc is merged | tested | d
to h into the on (release
develo when parent this d and
p new a feature branc | stable)
featur new branch. h, it is
es. featu merge
Multip re d into
le devel the
branch opme develo
es can nt p
exist task branc
concur is h.
rently. receiv
Each ed.
branch e Creat
corres ed
ponds based
to a on
new the
featur paren
eora t
group featu
of new re
featur branc
es. h
when
the
curre
nt
featu
re
devel
opme
nt
task

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 302

Repo

User Guide 3 Old Version
Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to
h Other
Branc
hes
is
split
into
sub-
tasks.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 303

Repo
User Guide 3 Old Version

Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to

h Other
Branc
hes

release | Releas | Long | Created | Never | When a e Wh
e - based version is en
branch | term | on the to be a

, develop released, ver
which branch the sio
is used before develop nis
to the first branch is rele
check release. merged ase
out a into this d
versio branch. and
n to arc
be hiv
release ed,
d. this
bra
nch

me
rge

int

the
ma
ster
bra
nch

en
ne

ver
sio

nis
dev
elo

ped
bas

on

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 304

Repo
User Guide 3 Old Version

Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to

h Other
Branc
hes

a
rele
ase
d
ver
sio
n,
this
bra
nch
is
me
rge
d
int
o
the
dev
elo
p
bra
nch
to
initi
aliz
e
the
ver
sio
n.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 305

Repo
User Guide

3 Old Version

Branch | Descri | Vali | When Whe | When to | When | When
ption | dity | to n to Merge to to End
Create Devel | Other Merg
op Branches | e This
This into This | Branc
Branc | Branch h to
h Other
Branc
hes
hotfix_ | Emerg | Tem | Created | Devel | _ When | After
bug1\b | ency pora | based oped the the
ug2... fix ry on the when corres | correspo
branch correspo | being pondi | nding
, nding creat ng bugs are
which version | ed. bug fixed
is used (usually fixing | and the
to fix the task is | version
bugs master compl | is
in the branch) ete, accepte
curren when this d
t issues branc | (release
versio are his d and
n. found in merge | stable)
the d into
master the
or bug maste
version. r and
develo
Y
branc
hes as
a
patch.
(1 NOTE

GitFlow has the following rules:

e All feature branches are pulled from the develop branch.

e All hotfix branches are pulled from the master branch.

e All commits to the master branch must have tags to facilitate rollback.

e Any changes that are merged into the master branch must be merged into the

develop branch for synchronization.

e The master and develop branches are the main branches and they are unique.

Other types of branches can have multiple derived branches.

Creating a Branch on the Console

Step 1 Access the repository list.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

306

Repo
User Guide

3 Old Version

Step 2 Click a repository to go to the details page.

Step 3 Switch to the Branches tab page. Branches in the remote repository are displayed.

Step 4 Click Create Branch. In the displayed dialog box, select a version (branch or tag)
based on which you want to create a branch and enter the branch name. You can
associate the branch with an existing work item.

Step 5 Click OK. The branch list is displayed.
----End

Managing Branches on the Console

You can perform the following operations in the branch list:

Filtering branches
- All displays all branches. The default branch is displayed on the top.

Other branches are sorted by the last commit time in descending order.

- Active: displays the branches that have been developing in the past three
months. Branches are sorted by the last commit time in descending order.

- Inactive: displays the branches that have not been developed in the past

three months. Branches are sorted by the last commit time in descendi
order.

ng

You can click a branch to go to the Files tab page of the branch and view its

content and history.

You can click a latest commit to view the content committed on the details

page.

You can click © to go to the Comparison tab page and compare the current

branch with another branch.
Click to download its compressed package.

You can click ¥ to create a merge request for a branch on the Merge
Requests tab page.

You can click ® to delete a branch as prompted.

In addition, you can configure branches as follows on the console:

Merge Requests
Default Branch
Protected Branches

Common Git Commands for Branches

Creating a branch

git branch <branch_name> # Create a branch based on the current working directory in the
local repository.

Example:

git branch branch001 # Create a branch named branch001 based on the current working

directory in the local repository.
If no command output is displayed, the creation is successful. If the branch

name already exists, as shown in the following figure, create a branch with
another name.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

307

Repo
User Guide

3 Old Version

branch branchool

: A branch named "branchool’ al

Switching a branch

Switching a branch is to check out the branch file content to the current

working directory.
git checkout <branch_name> # Switch to a specified branch.

Example:
git checkout branch002 # Switch to branch002.

The following information shows that the switch is successful.

~/Desktop/01_developer

5 git checkout branchoodl

Switched to branch "branchool’

Switching to a new branch
You can run the following command to create a branch and switch to the new
branch directly.

git checkout -b <branch_name> # Create a branch based on the current working directory in the
local repository and directly switch to the branch.

Example:

git checkout -b branch002 # Create a branch named branch002 based on the current working
directory in the local repository and directly switch to the branch.

The following information shows that the command is successfully executed.

t -b branchooz
new branch "branch0ooz’

Viewing a branch

Run the following commands to view the branches of the local repository,
remote repository, or all. These commands list only the branch names. To view
the specific files in a branch, run the command in Switching a branch.

git branch # View the local repository branch.
git branch -r # View the remote repository branch.
git branch -a # View the branches of the local and remote repositories.

The following figure shows the execution result of the three commands in
sequence. Git displays the branches of the local and remote repositories in
different formats. (Remote repository branches are displayed in the format of
remote/<remote_repository alias>/<branch_name>.)

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 308

Repo
User Guide

3 Old Version

$ git branch
branchool

£ git branch -r

$ git branch -a
branchool

htt
htt

Merging a branch

When a development task on a branch is complete, the branch needs to be
merged into another branch to synchronize the latest changes.

git merge <name_of_the_branch_merged._to_the_current_branch> # Merge a branch into the
current branch.

Before merging a branch, you need to switch to the target branch. The

following describes how to merge branch002 into the master branch.
git checkout master # Switch to the master branch.
git merge branch002 # Merge branch002 into the master branch.

The following figure shows the execution result of the preceding command.

The merge is successful, and three lines are added to a file.

i
Your branch is

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

309

Repo
User Guide 3 Old Version

(11 NOTE

The system may prompt that a merge conflict occurs. The following shows that a
conflict occurs in the fileOnBranch002.txt file.

To resolve the conflict, open the conflicting file, manually edit the conflicting code (as
shown in the following figure), and save the file. Then run the add and commit
commands again to save the result to the local repository.

el _HEAD

1l <«—— conflict

222
srrarrr branchl0Z
alale!
ZlaLe!

This is similar to resolving a conflict that occurs when you commit a file from the local
repository to the remote repository. For details about the working principle, see
Resolving Code Commit Conflicts.

A proper collaboration mode can prevent conflicts.

e Deleting a local branch
git branch -d <branch_name>

Example:

git branch -d branch002 # Delete branch002 from the local repository. The following
information shows that the operation is successful.

§ git branch -d branch00z
Deleted branch branch002 (was 8:

e Deleting a branch from the remote repository
git push <remote_repository_address_or_alias>-d <branch_name>

Example:

git push HTTPSOrigin -d branch002 # Delete branch002 from the remote repository whose alias
is HTTPSOrigin. The following information shows that the deletion is successful.

in -d branch0oz

deHub_0009. g1t

branch

e Pushing a new local branch to the remote repository
git push <remote_repository_address_or_alias> <branch_name>

Example:

git push HTTPSOrigin branch002 # Push the local branch branch002 to the remote repository
whose alias is HTTPSOrigin. The following information shows that the push is successful.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 310

Repo
User Guide

3 Old Version

/codehub/6

id. com/ 0001 fCadeHub_ 000
branch002 -= branch002

(1 NOTE

If the push fails, check the connectivity.

Check the established SSH key pair. If necessary, regenerate a key and configure it on the
CodeHub console. For details, see SSH Keys.

3.11.2 Managing Tags

Introduction

Git provides tags to help your team manage versions. You can use Git tags to
mark commits to manage important versions in a project and search for historical
versions.

A tag points to a commit like a reference. No matter how later versions change,
the tag always points to the commit. It can be regarded as a version snapshot that
is permanently saved (the version is removed from the repository only when being
manually deleted).

When using Git to manage code, you can search for and trace historical versions
based on commit IDs. A commit ID is a long string (as shown in the following
figure) that is difficult to remember and not identifiable, compared with version
numbers such as V1.0.0. Therefore, you can tag and name important versions to
easily remember and trace them. For example, tag a version as myTag_V1.0.0 or
FirstCommercialVersion.

)bbd (tag: myTag_V1.0.0)

Creating a Tag for the Latest Commit on the Console

Step 1
Step 2
Step 3
Step 4

Access the repository list.
Click a repository to go to the details page.
Click the Tags tab to view tags.

Click Create Tag. In the following dialog box that is displayed, select a branch or
tag.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 311

Repo
User Guide 3 Old Version

Craate Tag

* Based On master
* Tag Mame

Commit Message

Cancel

(11 NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight

tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Step 5 Click OK. A tag is generated based on the latest version of the branch. The tag list
is displayed.

--—-End

Creating a Tag for a Historical Version on the Console
Step 1 Access the repository list.

Step 2 Click a repository to go to the details page. On the Files tab page, click History.

Step 3 In the historical commit list, click 5 next to a commit record and select Create
Tag. The dialog box for creating a tag for the historical version is displayed.
(11 NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight

tag is generated if you do not enter a message. For details about annotated tags, see Tag
Classification.

Step 4 Click OK. A tag is generated based on the specified historical version of the
branch. The tag list is displayed.

--—-End

Managing Tags on the Console

e All tags in the remote repository are displayed in the tag list. You can perform
the following operations:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 312

Repo
User Guide

3 Old Version

- Click a tag in the Tag Name column to go to the file list of the tagged
version.

- Click the commit ID in the Latest Commit column to go to the commit
details page.

- Click zip or tar.gz in the Download column to download the package of
the tagged version in the corresponding format.

- Click = to delete a tag from CodeHub. (To delete the tag from the local
repository, perform the clone, pull, or -d operation.)

NOTICE

If an IP address whitelist is set for the repository, only hosts with whitelisted
IP addresses can download the repository source code on the page. If no IP
address whitelist is set for the repository, all hosts can download the
repository source code on the page.

You can create a branch based on a tag.

on Bi
Create Branch

Branch:

Based On:

| master

Q) Enter a keyword

Branches 2

masier =0

Dev

On the console, click the Files tab and click the file name of the target file.
Click the Comparison tab to compare commit records of the file.

Tag Classification

Git provides two types of tags:

Lightweight tag: is only a reference pointing to a specific commit. It can be
considered as an alias for the commit.

git tag <tag_name>

The following figure shows the information of a lightweight tag. You can find
that it is an alias of a commit.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 313

Repo
User Guide

3 Old Version

diff --git a/7370149fix b/7370149fx
new file mode 100644

index 0000000..76d9127

-- /dev/null

+++ b/7370149fix

o newline at end of file

Annotated tag: points to a specific commit, but is stored as a complete object
in Git. Compared with lightweight tags, annotated tags contain messages
(similar to code comments). In addition to the tag name and message, the
tag information includes the name and email address of the person who
creates the tag, and tag creation time/date.

git tag -a <tag_name>-m "<message>"

The following figure shows the information of an annotated tag, which points
to a commit and contains more information than that of a lightweight tag.

1, tag: namel, tag: esay

--git a/7370149fix b/7370149fix
new file mode 100644

index 0000000..76d9127
--- /dev/null
+++ b/7370149Fx

ne at end of file

(10 NOTE

Both types of tags can identify versions. Annotated tags contain more information and are
stored in a more stable and secure structure in Git. They are more widely used in large
enterprises and projects.

Common Git Commands for Tags

Creating a lightweight tag
git tag <tag_name> # Add a lightweight tag to the latest commit.

Example:

git tag myTag1 # Add a lightweight tag myTag?1 to the latest commit.
Creating an annotated tag

git tag -a <tag_name>-m "<message>" # Add an annotated tag to the latest commit.
Example:

git tag -a myTag2 -m "This is a tag." # Add an annotated tag myTag2 to the latest commit, and the
message is "This is a tag.".

Tagging a historical version

You can also tag a historical version by running the git log command to
obtain the commit ID of the historical version. The following uses an

annotated tag as an example:
git log # The historical commit information is displayed. Obtain the commit ID (only the
first several digits are required), as shown in the following figure. Press q to return.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 314

Repo
User Guide 3 Old Version

git tag -a historyTag -m "Tag a historical version." 6a5b7c8db # Add tag historyTag to the
historical version whose commit ID starts with 6a5b7c8db, and the message is "Tag a historical
version.".

(10 NOTE

e If no command output is displayed, the tag is successfully created. If the command
output is displayed, indicating that the tag name already exists (as shown in the
following figure), change the tag name and perform the operation again.

~/Desktop,/01_developer

e One commit can have multiple tags with unique names, as shown in the following
figure.

tag: tags, tag: tagd, tag: tag3, tag: tag2, tag: tagl, tag: namel, tag: esay

e Viewing tags in the local repository

You can list all tag names in the current repository and add parameters to

filter tags when using them.
git tag

e Viewing details about a specified tag
git show <name_of the_desired _tag>

Example:

Display the details about myTag1 and the commit information. The following
shows an example command output:

git show myTag1

g: myTagl)

diff --git a/fi11e01 b/file0l
index e0afObd..b3b2032 100644
--- a/fi1le0l
+++ b/file0l

e Pushing a local tag to the remote repository

- By default, tags are not pushed when you push files from the local
repository to the remote one. Tags are automatically synchronized when
you synchronize (clone or pull) content from the remote repository to the
local one. Therefore, if you want to share local tags with others in the

project, you need to run the following Git command separately.
git push <remote_repository_address_or_alias> <name_of the_tag_to_be_pushed> # Push
the specified tag to the remote repository.

Example:
Push the local tag myTag1 to the remote repository whose alias is origin.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 315

Repo
User Guide

3 Old Version

git push origin myTag1

- Run the following command to push all new local tags to the remote
repository:
git push <remote_repository_address_or_alias> --tags

(11 NOTE

If you create a tag in the remote repository and a tag with the same name in the
local repository, the tag will fail to be pushed due to the conflict, as shown in the
following figure. In this case, you need to delete one of the tags and push
another tag again.

You can view all tags in the remote repository by referring to Managing Tags on
the Console.

Deleting a local tag
git tag -d <name_of the_tag_to_be_deleted>

The following shows an example of deleting the local tag tag1.

~/Desktop/01_developer

(was d7dcaff)

Deleting a tag from the remote repository
Similar to tag creation, tag deletion also needs to be manually pushed.
git push <remote_repository address_or alias> refs/tags/<name_of the tag to be deleted>

The following shows an example of deleting a tag.

git push HTTPSOrigin :refs/tags/666 # Delete the tag 666 from the remote repository whose
alias is HTTPSOrigin.

odeHub_0009.g1t

Obtaining a Historical Version Using Tags

If you want to view the code in a tagged version, you can check it out to the
working directory. The code can be edited but cannot be added or committed
because the checked-out version belongs only to a tag instead of a branch. You
can create a branch based on the working directory, modify the code on the
branch, and merge the branch into the master branch. The detailed steps are as
follows:

Check out a historical version using a tag.
git checkout V2.0.0 # Check out the version tagged with V2.0.0 to the working directory.

Create a branch based on the current working directory and switch to it.
git switch -c forFixv2.0.0 # Create a branch named forFixV2.0.0 and switch to it.

fd /403

witched to a new branch 'forFixvz.0.0'

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 316

Repo
User Guide 3 Old Version

3. (Optional) If the new branch is modified, commit the changes to the

repository of the branch.
git add . # Add the changes to the staging area of the new branch.
git commit -m "fix bug for V2.0.0" # Save the changes to the repository of the branch.

» git add .

4. Switch to the master branch and merge the new branch (forFixV2.0.0 in this
example) to the master branch.

git checkout master # Switch to the master branch.
git merge forFixVv2.0.0 # Merge the changes based on the historical version into the master
branch.

(11 NOTE

The preceding commands are used to help you understand how to obtain a historical
version using a tag. Omit or add Git commands as required.

3.11.3 Merge Request Approval

Introduction

CodeHub supports multi-branch development and provides configurable review
rules for branch merge requests. When a merge request is created, all repository
members can review the branch to ensure the quality of the code to be merged.

Repository
administrator

Reviewsr : Marger

to the target |

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 317

Repo
User Guide 3 Old Version

Merge Request Settings

There will be no restriction on merge requests if you do not set any rules. You are
advised to understand related rules before using this function.

Merge Requests: You can set rules for merging branches.

Protected Branches describes how to configure the merge permission on a
protected branch.

Merge Request List

On the Merge Requests tab page, you can view merge requests.

e You can switch between tabs to view requests in different states.
e You can click a request to go to the details page.

e You can view the brief information about the request, including the involved
branch, creation time, and creator.

e You can search for a request based on different conditions.

e You can click Create Merge Request in the upper right corner to create a
request.

(11 NOTE

Closed: indicates that the request is canceled and the branch is not merged.
Merged: indicates that the request is approved and the branch is merged.

Merge Request Details

e On the Details tab page, merge rule statuses, mergers, reviewers, and
associated work items are displayed. You can view review comments, mark a
review comment as Unsolved, and view all activities related to the merge
request.

e On the Commit Records tab page, you can view the commit records of the
source branch.

e On the Files Changed tab page, you can view the changes to be merged and
filter changes by type (such as adding, updating, deleting, and renaming).

e On the CloudPipeline tab page, you can view the information about the
pipeline gate.
Creating a Merge Request

Assume that the administrator has set merge rules. To create a merge request for
a develop branch, perform the following steps:

Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Switch to the Merge Requests tab page.

Step 4 Click Create Merge Request and select the source and target branches for merge.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 318

Repo
User Guide 3 Old Version

Create Merge Request

Source Branch

dev002 -

Target Branch

master -

In the preceding figure, dev002 (where the development task is completed) is
merged into the master branch.
Step 5 Click Next. The system checks whether the two branches are different.

e If there is no difference, the system displays a message and the merge request
cannot be created.

e If the branches are different, the following Create Merge Request page is
displayed.

Create Merge Request

From CodeHub_0009 dev002 nto CodeHub_0009 master Change Branch

Add [WIP] to the title,
Preview
No associations found.
merge "dev002" into "master”

Create File dev002-file002

Delete source branch after merge

Sauash

Cancel
Commit Records Files Changed

Create File dev002-file002

The lower part of the Create Merge Request page displays the file differences of
the two branches and the commit records of the source branch.

Step 6 Enter the title and description.

A default description is generated based on the merge and commit messages of
the source branch. You can modify the description as required.

Step 7 Set Mergers, Reviewers, and other rules.

e Mergers: Mergers have permissions to merge branches (by clicking the merge
button) when all reviewers approve MRs and all discussed issues are solved
(or you can set the rule to allow merge with issues unsolved). They can also
close the MR.

e Reviewers: members assigned to review the merge request. Reviewers can
approve or reject the merge request, or raise questions to the requester.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 319

Repo

User Guide 3 Old Version

e Associated Work Items: You can associate a merge with a work item so that
the work item status can change automatically.

e Delete source branch after merge: You can choose whether to delete the
source branch after merge. The preset rule is used as the initial setting.

e Squash: You can choose whether to merge all commits of the merge request
into one and keep a clean history.

Step 8 Click OK to submit the merge request. The Details page is displayed.

If the requester is also a reviewer, they can directly review the merge request on
the Details page.

--—-End

Reviewing a Merge Request and Performing Merge

Step 1
Step 2
Step 3
Step 4

Step 5
Step 6

Access the repository list.
Click a repository to go to the details page.
Switch to the Merge Requests tab page.

(If you are not a reviewer, skip this step.) Review the merge request.

£ Branches © Tags 11 Merge Requests

Squash

(Optional) Comment on the submitted content and wait for the initiator to reply.

If the score is higher than the access control score, you can choose whether to
delete the source branch. After the operation, the request status changes to
Merged (only the merger can perform the merge operation).

If all reviewers approve the merge request, you can click Merge to merge the
branch or click the extension icon on the right of the Merge button to close the
request.

--—-End

Viewing Merge Request Records

Step 1 After a project team member submits a file, you can view the record on the

History tab.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 320

Repo
User Guide 3 Old Version

Al

fix #61089646 530
foord

update filed3
wmes

Step 2 Click a record to view details, compare the file content before and after the
modification, view comments, and click OK.

8 630

Step 3 Click the Reviews tab to view records on the Merge Requests tab.

----End

3.11.4 Associating Work Items

With CodeHub, you can associate each code commit with a work item of
ProjectMan.

e Associated work items help developers accurately record tasks for fixing bugs
and developing new features.

e Associated work items allow project managers to view information such as
change committer and committed content involved in each requirement and
bug fixing task.

(1 NOTE

Work item: It is one of the methods of tracing work contents in ProjectMan. Generally, a
work item has a unique number and description. A work item can be a requirement, defect,
or task. In the ProjectMan service, a work item is a list of work contents that can be
visualized management.

Commit: You can commit and save operations on files in the working directory, including
creating, editing, and deleting files. The following shows the commit command, in which
the -m parameter is mandatory and followed by the commit message.

git commit -m <commit_message>

On the CodeHub console, a changed file can be saved only after you enter a
commit message. Each saving operation on the console is a commit, and the
mandatory message corresponds to the content after -m in the commit
command.

CodeHub automatically associates work items with code by capturing keywords
from the commit message after -m. The most commonly used keyword is fix,

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 321

Repo
User Guide 3 Old Version

which is the recommended keyword in the prompt. The keyword must meet the
following format:

git commit -m "fix #<work_item_id> <commit_message>"

If a work item is successfully associated, the system automatically changes the
work item status based on the configured code commit status transition. By
default, the fix keyword sets the work item to the resolved state.

Example:
git commit -m "fix #123456 fixed this bug"
The work item 123456 is set to the resolved state after being pushed to CodeHub.

CodeHub allows you to associate work items with code on the local host or on the
console. The following describes the two methods.

Assume that a project has been created. If no project has been created, create a
project by referring to "Creating a Project in ProjectMan". In this case, you need to
perform operations in (Optional) Configuring the Code Submission Status,
Creating a Work Item, and Create a code repository under the project.

/\ CAUTION

e Only members of the same project and repository can associate work items
with code.

e For the work item creator, specified modifier, or account (such as Project
Manager) that has the permission to modify all work items in the project, their
association operations can change the work item status (new or resolved) and
generate comment records. In the association records, Transition successful is
displayed in the Result column, as shown in the following figure. For other
members, only association records are generated. The work item status is not
changed, no comment record is generated, and Association successful is
displayed in the Result column.

(Optional) Configuring the Code Commit Status Transition

By default, you can use the fix keyword in the commit message to change the
work item to the resolved state.

The following describes the working principle and advanced settings of associating
work items with code commits. If you only need default settings, skip this section.

In project settings, you can set three commit message keywords (such as fix,
close, and resolve) for different work item types (Epic, Feature, Story, Task, and
Bug). You can associate each keyword with a target status (for example, Resolved
or Closed). The work item status can also be customized.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 322

Repo
User Guide 3 Old Version

(11 NOTE

The default settings of code commit status transition are as follows:

e The fix keyword is associated with the Resolved target state (enabled by default).

e The close keyword is associated with the Closed target state (disabled by default).

e The resolve keyword is associated with the Resolved target state (enabled by default).
Only the project manager or other roles with the project setting permission can modify the
settings.

The following describes how to associate the close keyword to Rejected in a Task
work item.

Step 1 Access the project.

Step 2 Choose Settings > Project Settings and find the code commit status
corresponding to the Task work item type, as shown in the following figure.

Statuses and Transitions

Epics >
“ |

Features b

s setings only 2pply to the t3SK. Set automated transibon res thal malch your vorki
Stories >

s Change Status
v @) change Handler

Fields and Templates

Code Comit Detai Target Status Apply

Statuses and Transition

@) change status

Bugs y fix Resalied O

Common Fields

Closed

Common Statuses
resolve Resohied

Step 3 Click the target status of close, set it to Rejected, and set Apply to () .
The settings are automatically saved.
----End

Then, you can use the close keyword in the commit message to change the status
of a Task work item to Rejected when committing code.

Example:

git commit -m "close # <task_work_item_id> <commit_message>"

Creating a Work Item

To compare Associating a Work Item with Locally Committed Code and
Associating Work Items with Code Committed on the Console, repeat the
following steps to create two Task work items.

Step 1 Accessing the Project
Step 2 Choose Work > Work Items.

Step 3 Click Create Work Item and select Task from the drop-down list. The page for
creating a work item is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 323

Repo
User Guide

3 Old Version

Step 4

Enter a title and click Save.

--—-End

The work item management page is displayed. You can view the work item ID and
the status is New.

In this example:

e The ID of task01 is 7370149.
e The ID of task02 is 7370151.

On the project homepage, choose Work > Work Items to obtain a work item ID.

Associating a Work Item with Locally Committed Code

Step 1
Step 2

Prepare the Git environment on the local host. For details, see Overview. If you
can access the repository (the corresponding remote repository has been
associated), perform the following operations:

Create a file in the local master branch and push the file to the remote repository.
During the push, use the keyword fix in -m to associate the file with the work
item taskO1.

/A\ CAUTION

e In this example, the master branch is modified to simplify the process so that
you can quickly understand how to associate a work item with code committed
on the local host.

e Do not modify the master branch in the actual situation. It is recommended
that you create a branch for file operations, merge the changed file into the
master branch, and push the master branch to the remote repository.

Right-click the local repository folder and open Git Bash.

Check whether the remote repository address is successfully associated.

git remote -v # View the remote repository address associated with the local repository.

In the following figure, the underlined part indicates the remote repository address
associated with the local repository, and the information before the address is the
alias of the remote repository on the local computer.

.com: 1iutest00001,/CodeHub_000

.com: 11utest00001/CodeHub_000

If the associated repository is not the one you want or the repository is not
associated, clone the desired repository to the local computer.

After the clone is successful, run the git remote -v command again to verify the
association.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 324

Repo
User Guide 3 Old Version

Step 3 Check the repository status and switch to the master branch. (Skip this step for a
repository cloned in the previous step.)

git status # Check the repository status. You can view the current branch and whether there are
unsaved, uncommitted, and unpushed changes on the branch.

git checkout master # Switch to the master branch. Run the command when the current branch is not the
master branch.

Step 4 Create a file in the local repository folder. In this example, the file is named
fileFor7370149.

Step 5 Add the new file to the staging area using Git Bash.
git add fileFor7370149

Step 6 Commit the operation using Git Bash.
The git commit -m "fix #7370149 Task01" #/ uses the fix keyword to associate taskO1 whose ID is 7370149.

LJ NOTE
61081924 is the ID of tesk-01 created in Creating a Work Item.

Step 7 Push the committed content to the associated CodeHub repository using Git Bash.
git push

If the push is successful, the return value varies depending on the repository
structure. If all steps are 100% and done, the push is successful. If the push fails,
the key is incorrect.

Step 8 Verify the association result.

After the preceding operations are complete, go to the work item list, find the
work item whose ID is 7370149, and view its details, as shown in the following
figure.

e The status is Resolved.

e An associated code commit record is added. You can click the commit ID to
view the details.

e A comment is automatically generated to describe the work item association.

AR @ i x
#61081924 tesk-01

Description Associated (Person-Hour Details Operation History Basic Information

Commitied At

--—-End

Associating Work Items with Code Committed on the Console

Step 1 Go to the repository details page.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 325

Repo
User Guide 3 Old Version

Step 2 Create a file, as shown in the following figure. When filling in the remarks, start
with fix #7370151. Set other information to any value.

Create File

X #7370151 task0d

L] NOTE
7370151 is the ID of task02 created in Creating a Work Item.

Step 3 Click OK. The system performs the following operations on the CodeHub
repository:
Writes content to the new file.

git add .
git commit -m "fix #7370151 Task02"

That is, the system commits the new file and associates it with the task02 work
item using the fix keyword in the -m parameter.

Step 4 Verify the association.
View the task02 work item.

e The status is Resolved.

e An associated code commit record is added. You can click the commit ID to
view the details.

e A comment is automatically generated to describe the work item association.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 326

Repo
User Guide

3 Old Version

#708206209 task01

Description Associated (1) Person-Hour Details Operation History

v Associate with Work Item(0)

~ Code Commit Records(1)

5]
X

Resolved

\Want to know how to get started? Click here

Branch Commit Message Committed By

c3cfdbf9 - fix
master test
#708206209 task01

Committed At Start Date

Apr 24,2023 15:28:55

v Associated Code Branches(0)

Tag @

Attachment &)

Click to select a file, or drag and drop a file.

Comment

@ test

Message From CodeArts Repo:

test use command ‘fix' to commit code then the work item status has automatically changed to ‘Resolved

(© Apr 24, 2023 15:28:55 GMT+08:00

--—-End

Viewing the Association Between Commits and Work Items

test

Middle

Minor

The following table describes how to view the association between commits and

work items.

Table 3-13 Viewing the association between commits and work items

Scenario

Operation

On the ProjectMan
console, locate the
committed code based
on the work item.

Locate the target project in ProjectMan and go to
the work item details page. Click Associated > Code
Commit Records. The associated code commit
record is displayed. Click the repository node link
(the string before the commit message) in the
record. Then the code page is displayed.

On the CodeHub

Go to the target repository details page, click the

console, view the work
item based on the

association record.

Associated Work Items tab to view the work items
associated with code commits. Click a work item ID
to go to the details page.

3.11.5 Resolving Code Commit Conflicts

Introduction

When using CodeHub, you may encounter the situation where two members in
the same team modify a file at the same time. Code fails to be pushed to a
CodeHub repository due to the code commit conflict. The following figure shows a
push failure caused by the file change conflict in the local and remote repositories.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

327

Repo
User Guide 3 Old Version

-/Desktop/02_developer /CodeHub

$§ g1t push
To codehub. devcloud :Tiutest00001/CodeHub_0009.git
(tetch tir

(11 NOTE

e The returned messages vary depending on Git versions and compilers but have the
same meaning.

e The information similar to "push failure" and "another repository member" in the
returned message indicates that there is a commit conflict.

e Git automatically merges changes in different lines of the same file. A conflict occurs
only when the same line of the same file is modified (the current version of the local
repository is different from that of the remote repository).

e Conflicts may occur during branch merge. The locating method and solution are
basically the same as those for the conflict during the commit to the remote repository.
The following figure shows that a conflict occurs when the local branch1 is merged into
the master branch (due to the changes in the file01 file).

in filedl
s and then commit the result.

Resolving a Code Commit Conflict

To resolve a code commit conflict, pull the remote repository to the working
directory in the local repository. Git will merge the changes and display the
conflicting file content that cannot be merged. Then, modify the conflicting
content and push it to the remote repository again (by running the add, commit,
and push commands in sequence).

The following figure shows that there is a file merge conflict when you run the
pull command.

merating obj

tent): Mer in Te0l
ge tailed; n and then commit the result.

Modify the conflicting file carefully. If necessary, negotiate with the other member
to resolve the conflict and avoid overwriting the code of other members by
mistake.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 328

Repo
User Guide 3 Old Version

(11 NOTE

git pull combines git fetch and git merge. The following describes the operations in detail.

git fetch origin master # Pull the latest content from the master branch of the remote host.
git merge FETCH_HEAD # Merge the latest content into the current branch.

During merge, a message indicating that the merge fails due to a conflict is displayed.

Example: Conflict Generation and Resolution

The following shows an example to help you understand how a conflict is
generated and resolved.

A company uses CodeHub and Git to manage a project. A function (the file01 file
is modified) of the project is jointly developed by developer 1 (01_dev) and
developer 2 (02_dev). The two developers encounter the following situation.

1. file01 is stored in the remote repository. The following shows the file content.

fileO1
1 ##file@1AAAAAAAAAAAA
2 ##file@62BBBBEBBBBBBB
3 ##file@3CCCCCCCCCCCC
4 ##file@4DDDDDDDDDDDD
5

2. 01_dev modifies the second line of file01 in the local repository and
successfully pushes the file to the remote repository. The following shows the
file content in the local and remote repositories of 01_dev.

file01
1 #FHfi1le@1AAAALALLALLR
2 #Hmodify by 81 dew
3 #FHf11e@3CCOCCCCCOCCl
4 ##f11=840D0DDDDDDDDDD
5 ## add one line by Gl_devl

3. 02_dev also modifies the second line of file01 in the local repository. When
02_dev pushes the file to the remote repository, a conflict message is
displayed. The following shows the file content in the local repository of
02_dev, which is conflicting with that in the remote repository.

BHfilellAbAnAALARBAN
#H modifv by 02 dev
BHf11e030000CCCC0000
H¥#£11e0400DDDDDDDDDD
#H add by 02 _dev

4. 02_dev pulls the code in the remote repository to the local repository, detects
the conflict starting from the second line of the file, and immediately contacts
01_dev to resolve the conflict.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 329

Repo
User Guide 3 Old Version

5. We find that they both modified the second line and added content to the
last line, as shown in the following figure. Git identifies the content starting
from the second line as a conflict.

BHf11e0l1AbANAANARRAN
{444 HEAD

HH modlify by 02 _devw modify by 02_dev
HH£11e03C00CCCCCC000
##£11e040DDDDDDDDDDD
#H add by 02_dev

FRmodify by UL _dev modify by 01_dev
BHf11e03CCCCCOCC0CCT
##£11e040DDDDDDDDDDD _
add one line by 01 dev commit ID

>>>>>>>| afbdaacDO7230LEfET |

(11 NOTE

Git displays the changes made by the two developers and separates them using

e The content between <<<<<<<HEAD and ======= indicates the changes of the
local repository in the conflicting lines.

e The content between ======= and >>>>>>> indicates the changes of the remote
repository in the conflicting lines, that is, the pulled content.

e The content after >>>>>>> is the commit ID.

e Delete <<<<<<<HEAD, =======, >>>>>>>, and commit ID when resolving the
conflict.
6. The two developers agree to retain all changes after discussion. After 02_dev
modifies the content, the modified and added lines are saved in the local
repository of 02_dev, as shown in the following figure.

BHfile0lAnAnAAAARRAN

B modifv by 02_devw
#Hmodify by 01_devw
BHf11e030000CCCC0000
##£11=0400D0DDDDDDDDD

add by 0Z2_dev

add one line by 01_dev

7. 02_dev pushes the merged changes to the remote repository (by running add,
commit, and push commands in sequence). The following shows the file
content in the remote repository after a successful push. The conflict is
resolved.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 330

Repo
User Guide

3 Old Version

fileO1

#1181 AMAALAALALLA

modify by 82 dev
Hmodify by 81_dev
##file@3CCCCCCCCCCCC
#4#f112e840DDDDD0ODDDDD

add by 82 dev

add one line by @1 _dev

S W P W

(1 NOTE

In the preceding example, TXT files are used for demonstration. In the actual situation, the
conflict display varies in different text editors and Git plug-ins of programming tools.

Preventing a Conflict

Repository preprocessing before code development can prevent committing and
merge conflicts.

In Example: Conflict Generation and Resolution, 02_dev successfully resolves the
conflict in the commit to the remote repository. For 02_dey, the latest code version
of the local repository is the same as that of the remote repository. For 01_dey,
version differences still exist between the local and remote repository. A conflict
will occur when 01_dev pushes code to the local repository. The following
describes methods to resolve the conflict.

Method 1 (recommended for beginners):

If your local repository is not frequently updated, clone the remote repository to
the local repository to modify code locally, and commit the changes. This directly
resolves the version differences. However, if the repository is large and there are a
large number of update records, the clone process will be time-consuming.

Method 2:

If you modify the local repository every day, create a develop branch in the local
repository for code modification. When committing code to the remote repository,
switch to the master branch, pull the latest content of the master branch in the
remote repository to the local repository, merge the branches in the local
repository, and resolve the conflict. After the content is successfully merged into
the master branch, commit it to the remote repository.

Resolving a Merge Conflict on the Console

CodeHub allows you to manage branches in the cloud. The following simulates a
conflicting merge request and describes how to resolve it.

Step 1 Create a repository.

Step 2 Create a file named file03 on the master branch in the repository. The initial

content is as follows:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 331

Repo

User Guide 3 Old Version
530 / file03
i master + Q +
com file03
images 1 AAA
— . 2 BBE
»-] .gitignore 3 cce

Mi 530.md

531

530

Mi README.md
build. xm

B file03

Step 3 Create a branch named branch007 based on the master branch.

The content in the master branch is the same as that in branch007. The following
describes how to make them different.

Step 4 In the master branch, modify file03 as shown in the following figure, and enter
the commit message modify in master.

530 [/ file03
 master - Q N 3
com b3 file03 2 History 3 Blame
images . P
[giti 2 B modify in master B
l>-] .gitignore ; o
Mi 530.md
3 53
4] 630

Mi README.md

build.xm
(3 file03

LB

Step 5 Switch to branch007, modify file03 as shown in the following figure, and enter
the commit message modify in branch007. Then the two branches are different,

that is, a conflict occurs.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 332

Repo

User Guide 3 Old Version
¥ branch007 » |Q + JH0 1 Tiles
com [3 file03 2 History 5 Blame
images 1 Yy
. 2 modify in branchée? BBB
l>-] .gitignore 3 cec
Mi 530.md
[0 531
[630

Mi README.md
build. xm

[file03

Step 6 Create a merge request to merge branch007 to the master branch. Click OK to
submit the merge request.

The merge request details page displays a message indicating that a merge
conflict exists and suggests you resolve the conflict on CodeHub or locally.

01

MMMMMMM

ssssssssss

Step 7 Perform the prompted operation to resolve the conflict:
e Resolving a conflict on CodeHub (recommended for small code volume)
a. Click Resolve conflicts on CodeHub. The following page is displayed,
showing the code conflict.

Click Apply My Commits or Apply Other Commits to select a final
version.

01

Message

Commit Confict Resokton

b. If the conflict cannot be resolved by overwriting the file, click 4 to go to
the manual editing page, as shown in the following figure. The conflict

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 333

Repo
User Guide 3 Old Version

display format is similar to that in Example: Conflict Generation and
Resolution.

01

nnnnnn
>>>>>>>>

Commit Confict Resoluon

¢. Manually modify the code to resolve the conflict and commit the
changes.

/\ CAUTION

Enter a commit message.

In the preceding figure, the following signs are used for conflict display
and separation: <<<<, >>>>, and ====. Delete the lines where the signs
are located when modifying code.

e Resolving conflict locally (recommended for large-scale projects)

Click resolve conflicts on locally. The following page is displayed. Perform
the operations as prompted.

Check Out, View, and Merge Branches Locally

Step 1 Update the code and switch to the merge request source branch

git Feteh origin
git checkout =b branchd0T origin/branchiOT

Step 2 herge the target branch into the source branch

git merge origin/master

Step 3 Follow the prompls to manualty resolve contlicts localky:
Stap 4 Submit fo remaote after conflict resohtion.
git add .

git commit -m “r|-==:=.5-='J

git push origin branchO7

Step § Refrezh the interface to continues viewing the merge reguest.

(11 NOTE

CodeHub automatically generates Git commands based on your branch name. You only
need to copy the commands and run them in the local repository.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 334

Repo
User Guide 3 Old Version

Step 8 After the conflict is resolved by using either of the preceding methods, the merge
request status changes to Open. Click Merge to merge branches. The system
displays a message indicating that the merge is successful.

You can also follow the instructions in Merge Request Approval.

Now, the content of the master and branch007 branches is the same. You can
switch between branches to check the content.

----End

3.12 Member and Permission Management

3.12.1 IAM Users, Project Members, and Repository Members

Repository members are members of the project to which the repository belongs.

Table 3-14 Mapping between project roles and repository roles

Project Role Repository Role

Project manager Repository administrator

Developer Common repository member

Test manager Repository viewer

Tester

Participant

Viewer

O&M manager

Custom role A project creator can be set as a common
repository member or viewer.

3.12.2 Managing Repository Members

You can manage repository members on the Members tab page.

Only the repository creator (owner) and repository administrator can manage
repository members. Other members can only view the repository member list, as
shown in Figure 3-7.

Figure 3-6 Member list

Nernber Role Synchoizaion

[B :) sraeee 0] |

e

Sonmen rerte

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 335

Repo

User Guide 3 Old Version

Figure 3-7 Member list for those who do not have operation permissions

Membership Requests

sssssssssssssss

Automatically Synchronizing Project Members to the Repository

Configure Member Role Synchronization () in the Figure 3-6) to synchronize
project roles to the repository. For details about the synchronization policies, see
Table 3-15.

Table 3-15 Member role synchronization

Item Project Role | Repository | Allowed Operation(® in
Role the Figure 3-6)

_ Project Repository _

manager administrat

or

Allow developers | Developer Common e Setting the member as a
to access the Custom role | repository repository administrator
repository (developer | member e Setting the role as a

permission) common repository

member
e Removing the member
Allow viewers to | Test Repository Removing the member
access the manager viewer
repositor
P y Tester

Participant

Viewer

Custom role

(viewer

permission)
L] NOTE

e A project manager is a repository administrator by default.

e To remove a project manager from the repository, change their role in the project

settings.

e If you select a policy in Member Role Synchronization, users added to the project are
automatically synchronized to the repository.

e If you deselect policies in Member Role Synchronization and click Synchronize, related

members will be removed immediately.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

Repo
User Guide

3 Old Version

Manually Adding a Repository Member

Manually added repository members will be overwritten by the synchronization
function in Automatically Synchronizing Project Members to the Repository.
You are advised to use either of the two functions.

Click Add Member (3 in the Figure 3-6). On the displayed dialog box, select a
member from the member list of the corresponding project and add the member
to the repository. A default repository role is assigned to the member based on the
project role. For details about the role mapping, see Table 3-16.

Table 3-16 Mapping between project roles and repository roles

Project Role

Repository Role

Allowed Operation (@ in the Figure
3-6)

Project manager | Repository e Downgrading the role to a common
administrator repository member
(default)
Common e Escalating the role to a repository
repository administrator
member e Removing the member

Developer Repository e Downgrading the role to a common

administrator

repository member

Tester

Participant

Viewer

O&M manager

Custom role

Common e Escalating the role to a repository
repository administrator
member e Downgrading the role to a repository
(default) viewer

e Removing the member
Repository e Escalating the role to a common
viewer repository member

e Removing the member

Test manager Repository Removing the member

viewer (default)

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 337

Repo
User Guide 3 Old Version

(11 NOTE

e |[f the list is empty, the project has no members except the repository creator. You need
to add members to the project.

e On the repository list page, you can select Customize Project Roles to modify the
repository role mapped from a custom project role as a project creator.

3.12.3 Repository Member Permissions
Repository Creation

Table 3-17 Repository creation permission of project roles

Operation Project Manager | Developer Others

Create v v -
repositories

Operations and Viewing in the Repository

Operation Repository Common Repository
Administrator/ Member Viewer
Creator

Viewing

View repository v v v

files

View work items | ¥ v v

associated with

code

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 338

Repo

User Guide 3 Old Version

Operation Repository Common Repository
Administrator/ Member Viewer
Creator

View the member | v v v
list
View the branch v v v
list
View the tag list v
View commit v
history
Follow or v v v
unfollow
repositories
View merge v v v
requests
View repository v v v
statistics
View commit v v v
graphs
Development
Fork repositories v
Pull code v
Download code v
packages
Set SSH keys and | ¥ v v
HTTPS passwords
Push code to v v -
unprotected
branches
Force push code v v -
to unprotected
branches
Push code to Determined by Determined by -
protected the branch the branch
branches protection policy | protection policy
Add directories, v v -
commit messages,
copyright
description, and
build guide

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 339

Repo

User Guide 3 Old Version
Operation Repository Common Repository
Administrator/ Member Viewer
Creator
Upload, edit, and | v v -
delete files
Create branches v Configured by -
commit rules
Delete v v -
unprotected
branches
Create tags v Configured by -
commit rules
Delete tags v - -
Create merge v v -
requests
Assign merge Determined by Determined by -
requests to the branch the branch
reviewers (the protection policy | protection policy
target branch is
protected)
Assign merge Determined by Determined by -
requests to the branch the branch
reviewers (the protection policy | protection policy
target branch is
protected)
Accept merge Determined by Determined by v
requests as a the branch the branch
reviewer (the protection policy | protection policy
target branch is
protected)
Accept merge Determined by Determined by -
requests as a the branch the branch
reviewer (the protection policy | protection policy
target branch is
protected)
Assign merge v v -
requests to
reviewer (the
target branch is
not protected)
Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 340

Repo
User Guide

3 Old Version

Operation

Repository
Administrator/
Creator

Common
Member

Repository
Viewer

Assignh merge
requests to
reviewers (the
target branch is
not protected)

v

Accept merge
requests as a
reviewer (the
target branch is
not protected)

Accept merge
requests as a
reviewer (the
target branch is
not protected)

Score merge
requests

Comment on
merge requests

Management

Access the
console

Add repository
members

Delete repository
members

Edit permissions
of repository
members

Trigger actions to
generate
repository
statistics

Delete
repositories

Share repositories
as templates

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

341

Repo
User Guide

3 Old Version

Operation

Repository
Administrator/
Creator

Common
Member

Repository
Viewer

General settings:
Configure
repository
information

v

General settings:
Configure merge
requests

General settings:
Configure commit
rules

General settings:
Lock repositories

Repository
management:
Manage the
default branch

Repository
management:
Manage protected
branches

Repository
management:
Manage
submodules

Repository
management:
Free up repository
space

Repository
management:
Copy repository
settings

Security
management:
Manage deploy
keys

Security
management:
Manage IP
address whitelists

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

342

Repo

User Guide 3 Old Version

Operation Repository Common Repository
Administrator/ Member Viewer
Creator

Security v - -

management:

Manage risky

operations

Security v - -

management:

Manage operation
logs

(11 NOTE

For details about how to set a branch protection policy, see Protected Branches.

3.13 More About Git

3.13.1 Using the Git Client

Background

Prerequisites

Before using the Git client, you need to understand the workflow and master basic
operations, such as installing Git, creating and cloning repositories, adding,
committing, and pushing changes, creating, updating, and merging branches,

creating tags, and replacing local changes.

You have installed the Git client.

Usage Process

The following figure shows the basic process of using the Git client.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

343

Repo
User Guide

3 Old Version

Install the Git client

Confgure the Git cient

Create a repositony Dewelopers skip this step.

Clone a repository

Create a branch

Compie code

Add and commit changes

P ush changes o the

sener

End

Update and merge
branches

Table 3-18 Procedure

Procedure Description
Install the Install the Git client for your operating system.
Git client e Git for Windows
e Git for macOS X
e Git for Linux
Create a Create and open a new folder, and run the following command:
repository git init
A Git repository is created.
Clone a Run the following command to create a clone of a local
repository repository:
git clone /path/to/repository
If the repository is on a remote server, run the following
command:
git clone username@host:/path/to/repository

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 344

Repo
User Guide

3 Old Version
Procedure Description
Local There are three components in a local repository: working
repository directory, index, and HEAD.
structure e Working directory contains the files that you are working on.
e Index caches changes you have made.
e HEAD points to the latest commit.
Add and Run the following command to add the changes to the index:
commit git add <filename>
changes git add
Run the following command to commit the changes:
git commit -m " <commit_message>"
The changes are committed to the HEAD but not to the remote
repository.
Push The changes are in the HEAD of the local repository. Run the
changes following command to push the changes to the remote
repository:
git push origin master
You can replace master with any other branch to be pushed.
If you have not cloned an existing repository, run the following
command to connect the local repository to a remote server
before the push:
git remote add origin <server>
Then push the changes to the added server.
Create a Branches enable you to develop features separately. When a
branch repository is created, the master branch is the main branch by

default. Develop features on other branches and then merge
them to the main branch after the development.

1. Create a branch named feature_x and check out the branch.
git checkout -b feature_x

2. Check out the main branch.
git checkout master

3. Push the main branch to the remote repository. (If the branch
is not pushed, the branch can be seen only in your local
repository.)
git push origin <branch>

4. Delete the created branch.
git branch -d feature_x

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 345

Repo
User Guide

3 Old Version

Procedure

Description

Update and
merge
branches

1. Run the following command to update the local repository to

the latest remote commits:

git pull

The remote changes are fetched and merged to your working
directory.

2. Run the following command to merge other branches to the
current branch (for example, the master branch):
git merge <branch>

NOTE
Automatic merges may fail and may induce conflicts. In this case, you
need to modify these files to manually merge the conflicts.

3. After the modification, run the following command to add
your changes.
git add <filename>

4. Before the modification, you can run the following command

to compare the source and target branches.
git diff <source_branch> <target_branch>

Create a tag

You are advised to create tags for releases. For example, run the
following command to create a tag named 1.0.0:

git tag 1.0.0 1b2e1d63ff

1b2e1d63ff is the first 10 characters of the commit ID to be
tagged. Run the following command to obtain the commit ID:
git log

You can enter the first several characters of the commit ID as
long as it can distinguish the commit from others.

Replace local
changes

Run the following command to replace the unwanted local
changes:

git checkout -- <filename>

The files in the working directory are replaced by the latest
content in the HEAD. Changes added to the index and new files
are not affected.

To discard all local changes and commits, fetch the latest
commit from the server and reset the local main branch to the

commit.
git fetch origin
git reset --hard origin/master

3.13.2 Setting Password-Free Access via HTTPS

Background

The username and password are required each time you connect to CodeHub
using the HTTPS protocol. However, Git can help you implement password-free
access with its credential storage. You are advised to install Git 2.5 or a later
version so that the function runs properly. The following describes the
configuration methods on different OSs:

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 346

Repo

User Guide 3 Old Version
e Setting Password-Free Access on Windows
e Setting Password-Free Access on macOS
e Setting Password-Free Access on Linux
Prerequisites
e The SSH keys and HTTPS password have been set.
e You have to enter the username and password in CodeHub each time you use

the HTTPS protocol to perform operations such as git clone, git fetch, git pull,

and git push.

Setting Password-Free Access on Windows

The following table describes how to set password-free access on Windows.

Table 3-19 Setting password-free access on Windows

Method Description

Set the HTTPS | 1. Set the Git authentication mode.

password on Open the Git client and run git config --global

the local credential.helper store.

computer 2. Run the Git command to clone or push code for the first

3. Open the .git-credentials file. If the username and
password have been stored locally, the following

information is displayed:
https://username:password@***.*** *** com

time, and enter the username and password as prompted.

Setting Password-Free Access on macOS

Install the osxkeychain tool to implement password-free access.

1.

Check whether the tool has been installed.
git credential -osxkeychain

Test for the cred helper

Usage: git credential -osxkeychain < get|store|erase >

If the following information is displayed, the tool has not been installed.

git: 'credential -osxkeychain' is not a git command. See 'git --help'.

Obtain the installation package.

git credential -osxkeychain

Test for the cred helper

git: 'credential -osxkeychain' is not a git command. See 'git --help'.

curl -s -0\
https://github-media-downloads.s3.amazonaws.com/osx/git-credential-osxkeychain
Download the helper

chmod u+x git-credential-osxkeychain

Fix the permissions on the file so it can be run

Install osxkeychain in the directory where Git is installed.
sudo mv git-credential-osxkeychain\

"$(dirname $(which git))/git-credential-osxkeychain"

Move the helper to the path where git is installed

Password:[enter your password]

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

347

Repo
User Guide 3 Old Version

4. Use osxkeychain to set Git to the password-free mode.
git config --global credential.helper osxkeychain
#Set git to use the osxkeychain credential helper

(10 NOTE

The password needs to be entered the first time you perform Git operations. After
that, osxkeychain will manage the username and password, and you do not need to
enter password subsequently.

Setting Password-Free Access on Linux
Linux provides two password-free access modes:

e cache:

- Credentials are cached in memory and cleared after 15 minutes.
git config --global credential.helper cache
#Set git to use the credential memory cache

- Set the expiration time in timeout, in units of seconds.
git config --global credential.helper 'cache --timeout=3600'
Set the cache to timeout after 1 hour (setting is in seconds)

e store:

Credentials are stored in a plain-text file (~/.git-credentials by default) in the
home directory on the disk. The credentials never expire unless you change
the password on the Git server. The content of the git-credentials file is as
follows:

https://username:password@*********+* com

After saving the credentials in the preceding file, run the following command
to implement pass-free access:

git config --global credential.helper store

Troubleshooting

If the message SSL certificate problem: self signed certificate is displayed when
you download code using HTTPS, run the following command on the client:

git config --global http.sslVerify false

3.13.3 Using the TortoiseGit Client

3.13.3.1 Generating a PPK File

A PPK file is required for downloading and committing code on the TortoiseGit
client. Assuming that an SSH key pair has been generated on the Git client. The
methods to generate a PPK file are different in the following two scenarios:

e The public key has been added to CodeHub.
e The public key has not been added to CodeHub.

The Public Key Has Been Added to CodeHub

1. On theStart menu, search for and select PuttyGen.
2. Click Load.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 348

Repo
User Guide 3 Old Version

@ PUTTY Key Generator ? X
Eile Key Conversions Help

Key
Mo key.

Actions

Generate a public/private key pair

Load an existing private key file | Load |

Save the generated key Save public key Save private key

Parameters

Type of key to generate:
(® RSA (O DSA (O ECDSA (O EdDSA (O 5SH-1 (RSA)

Mumber of bits in a generated key:

3. Select the id_rsa file in the directory where the SSH key pair is stored and
click Open.

Mame N Date modified

. id_rsa
P] id_rsa

4. Click OK and select Save private key.

E® PuTTY Key Generator ? s
Eile Key Conversicns Help
Key
Public key for pasting into OpenS5H authorized_keys file
sshsa AAAABINzS ~
+psYik 7njD4bJamJ RGdvaeZUGE/ /W 5exH3dtM5CGjvwwe LI¥h Kt
1/ 3pAfZZ5e XEel)7 d5u1H
=X MmKdewuX/sTE; NMYZYE525k KBudwrge50aliq ¥ /HefHSce S
olyha7IdIFDSs YB1 ms2TRg w
Key fingerprint: |ssh-rsa P BP0 TtDGRkumK01 Im1Cs |
Keycomment: |rsairurERlameas |
Key passphrase: | |
Confirm passphrase: | |
Actions
Generate a public/private key pair Generate
Load an existing private key file Load
Save the generated key Save public key
Parameters
Type of key to generate:
®RSA (O DSA (O ECDSA (O EdDSA (O 55H-1 (RSA)
MNumber of bits in a generated key:

5. Click Yes to generate a PPK file.
6. Save the file to the directory where the SSH key pair is stored.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 349

Repo
User Guide

3 Old Version

Date modified

ft Publish...

PPK File

The Public Key Has Not Been Added to CodeHub

1.
2.

3.

4.

On the Start menu, search for and select PuttyGen.

Click Generate to generate a key, as shown in the following figure.

ﬁ’ PuTTY Key Generator ?
File Key Conversions Help

Key
No key.

Actions

b

Generate a public/private key pair | |

Load an existing private key file Load

Save the generated key Save public key Save

Parameters

Type of key to generate:
® RSA (O DSA (O ECDSA () EdDSA (O 55H-1 (RSA)

MNumber of bits in a generated key: 2048

Click Save private key to save the generated key as a PPK file.

E® PuTTY Key Generator ?
Eile Key Conversicns Help

Key
Public key for pasting into OpenS5H authorized_keys file:

X

sshsa AAAABINzS
+psYik 7njD4bJamJ

RGdvae ZUGE//W5exH3dtM5Gjvwwe LiXhkt
d5u1H
NMYZYE525k KBudwrge50aliq ¥ /HefHSce S

~

L

Key fingerprint : | sshsa M A AF%En o Tt DGRumKD 1 Tm1Cs

Keycomment: |rsairurERlameas

Key passphrase: |

Confirm passphrase: |

Actions
Generate a public/private key pair Generate
Load an existing private key file Load

Save the generated key Save public key Save private key

Parameters

Type of key to generate:

®RSA (O DSA (O ECDSA (O EdDSA (O 55H-1 (RSA)
MNumber of bits in a generated key:

Click Yes to generate a PPK file.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

350

Repo
User Guide

3 Old Version

5.

Save the file to the directory where the SSH key pair is stored.

Date modified

3.13.3.2 Creating a Git Repository

To create a repository for the first time, right-click in an empty directory on the
local computer and choose Git Create repository here.

View

Sort by
Group by
Refresh

Customize this folder...

Undo Rename
Git GUI Here
Git Bash Here

Give access to

Git Clone...

Git Create repository here...

TortoiseGit
New

Properties

Ctrl+Z

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 351

Repo
User Guide

3 Old Version

3.13.3.3 Cloning a Repository

1. Open the local Git repository directory (the directory where the repository is
created) and choose TortoiseGit > Pull on the right-click menu.

2. Click Manage Remotes.

87 C\Users'

Remote

() Arbitrary URL:
Remote Branch:

Options
Diquash
[No Fast Forward
(W] Tags
[®] Prune

Autoload Putty Key

ESERIT - Pull - TortoiseGit X
|master -
[No Commit

[] Fast Forward Only

Manage Remotes

[Launch Rebase After Fetch

3. Specify the URL, select the PPK file for the Putty field, and click OK.

v -4 General
() Context Menu
-, Context Menu 2
£* Dialogs 1
£* Dialogs 2
-£% Dialogs 3
Colors 1
& Colors2
& Colors 3
W Alternative editor
v 4P Git
& Remote
€ Credential
v & Hook Scripts
@ lssue Tracker Integration
& lssue Tracker Config
v {g) |con Overlays
& lcon Set
&3 Overlay Handlers
v . Network
@ Email
v @ Diff Viewer
Y Merge Tool
£} Saved Data
&, TortoiseGitBlame
2 TortoiseGitUDiff
#¥ Advanced

3.13.3.4 Pushing a Repository

1. Configure the username, email address, and signature key (PPK file).

& Remote

Remote:

m‘ Remote: origin | Rename
URL: hitp:// (R PIRRIUR BT
Push URL: hﬂp:f'. TR AT "
Putty Key:
Tegs: Reachable v [JPush Default
[®] Prune

Add New/Save]

Remove

OK Cancel App Help

2. Right-click in the blank area and choose TortoiseGit > Settings.

3. Select Git, and set Name and Email.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

352

Repo

User Guide 3 Old Version
25T - Settings - TortoiseGit x
v . # General @ Gt
s Context Menu
Context Menu 2 Config source
£ Dialogs 1 (@) Effective I OLocal << () Global << () System
&* Dialogs 2
-£= Dialogs 3 User Info
Colors1 Name [T | inherit
Colors2 —
@ Colors3 Emait ey | Crineit
¥ Alternative editor i
v 4 Gt Signing key ID: | |
- Remote -]
&g Credential Auto Crlf convert
v ¥ Hook Scripts X —
@ lssue Tracker Integration AutoCrls: S =it
-~ @ Issue Tracker Config
v &) lcon Overlays ath
. ;" leon Set Cave to
%) Overlay Handlers ‘ Local
w . Network
@ Email Edit local .git/config Edit global .gitconfig Edit systemwide gitconfig
~ &, Diff Viewer
Y Merge Tool Edit .tgitconfig
& Saved Data

L. TortoiseGitBlame View effective config

F TortoiseGitUDiff

Advanced

Cancel Apf Help
(0 NOTE

If the push fails, run the following script to locate the fault and send the git.log file
generated to the technical support:

#!/bin/bash

this script will collect some logs for Coding.net

how to use

first enter your git repository

then execute this bash, please make sure you have correct rights

echo "## git version ####H#RH#HH#HH#H#H#HARA" >> git.log

git version >> git.log

echo "## ping ####H#HBHBHRHHHHHHH#HR#HRHRH" >> git.log

ping code* kit com >> git.log

echo "## curl code*** sk com ##t#########" >> git.log

curl -v https://code******xxxk com >> git.log 2>&1

echo "## ssh -vT git@code***** vk com ############A##" >> git.log

ssh -vT git@code*********+* com >> git.log 2>&1

echo "## git pull #############H" >> git.log

GIT_CURL_VERBOSE=1 GIT_TRACE=1 GIT_TRACE_PACKET=1 git pull >> git.log 2>&1

3.13.4 Use Cases on the Git Client

3.13.4.1 Uploading and Downloading Code

1. Ensure that the network connection is up and running.

Enter telnet code******+ ¥ com 22 on the client.

If command not found is displayed, the network cannot access CodeHub.
2. Check if the client is trusted by CodeHub.

If the system prompts you to enter a password when you pull or push code,
check whether the public key has been added to CodeHub.

If the public key has been added, run $ ssh -vT git@code******sssssss com to
check whether the trust relationship is established.

If the following information is displayed, the trust relationship is established.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 353

Repo
User Guide 3 Old Version

Entering in
to GitLab,
cl o

|
hanne]

3. If the fingerprints of both parties are changed after the trust relationship is
established, a public key authentication error is reported during commit
attempts. In this case, perform the following operations:

a. Delete the lines related to code*********¥**** com from the ~/.ssh/
known_hosts file.

b. Enter push, pull, or ssh -T git@code*********¥¥¥* com,

c. Enter yes when asked whether to trust the public key of the server.

4. The code download is successful. If the target branch of the push is protected,
the code fails to be pushed.

git config --global push.default matching
To squelch this me ge and adopt the new behawvior
git config --global push.default simple

When push.defau mat: , g1t will cal branches
to the r nam

not appear to be a git repo

rom remote repository.

the correct access rights

5. Contact the repository administrator to unprotect the branch. The code can
be pushed after the protection is canceled.

3.13.4.2 Committing Letter Case Changes in File Names to the Server

Background

When changes are made to the case of a file name and pushed to the server, the
server does not recognize the changes.

For example, a file named AppTest.java is renamed as apptest.java on the Git
client. When the change is pushed to the server, the name of the file in the remote
server is still AppTest.java.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 354

Repo
User Guide 3 Old Version

Procedure

Run the following commands in sequence:

git mv --force AppTest.java apptest.java
git add apptest.java

git commit -m "rename"

git push origin XXX (branch name)

3.13.4.3 Setting the Line Ending Conversion

Background
Different operating systems may use different line endings. Therefore, if you open
a file created in an operating system different from yours, the file may be
displayed incorrectly. This problem may also occur when you use version control
systems.

Procedure

1. (Optional) By default, core.autocrlf is set to false in Git. Perform the
following operations to enable Git to identify and convert the line endings for
text files:

- On Windows

Set core.autocrlf to true. All text files in the local repository use LF line
endings whereas those checked out to the working directory use CRLF
line endings.

- On Linux

Set core.autocrlf to input. When files are imported to the local
repository, Git auto-converts line endings from CRLF to LF. No conversion
is performed when files are checked out from the local repository to the
working directory.

2. Set core.autocrlf to true to enable auto-conversion of line endings.
git config --global core.autocrlf true

3.13.4.4 Committing Hidden Files

Run git add.

(1 NOTE

e Do not use git add * which instructs Git to ignore the hidden files.

e The file and directory names cannot contain special characters.
3.13.4.5 Pushing a File That Has Been Changed on the Server

Background

A file push on the Git client will fail if the file is modified on the server, and the
following information is displayed.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 355

Repo

User Guide 3 Old Version
git.exe push —--progress "origin" master:master
To git@ceodehub-cn-northeast-
- ',ccm::'d.=_e56335'389433::823855:_"725&52:’EE,r‘___._____,_._,_,g:r.t.
! [rejected] master -> master (fetch first)
fai ush some refs to 'git@codehub-cn-northeast-
¥ com: £dae56335080433aB8298a5¢c72aed2fe6/ o o .._.l.git’
= rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: toc the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.
Procedure

1. Pull the latest code from the server.

git pull origin XXX (branch name)

2. Modify and push the code.

git push origin XXX (branch name)

3.13.5 Common Git commands

Background

Git is a free and open-source distributed version control system. It can
manage projects of any size in an agile and efficient manner.

With Git, you can clone a complete Git repository (including code and version

information) from a server to a local computer, create branches, modify and

commit code, and merge branches.

Commonly Used Commands

Table 3-20 Common Git commands

The following table describes the functions, formats, parameters, and examples of
common Git commands.

Comm | Funct | Format Paramete | Example

and ion r
ssh- Gener | ssh-keygen - | email: Obtain the key file id_rsa.pub
keygen |atea |[trsa-C indicates | from the .ssh folder in drive C.
-trsa key [email] an email ssh-keygen -t rsa -C
address. "devcloud_key01@XXX.com"
git Creat | git branch new Create a branch:
branch |ea [new branchna git branch newbranch
branc | branchname] | me:
h indicates
the name
of the
new
branch.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

356

Repo

User Guide 3 Old Version
Comm | Funct | Format Paramete | Example
and ion r
git Delet | git branch -D | new Delete a local branch:
branch |ea [new branchna git branch -D newbranch
-D branc | branchname] | me: .
h indicates Deletg a branch in the remote
the name repository:
of the git branch -rd origin/newbranch
new Remove branches that have
branch. been deleted in the remote
repository:
git remote prune origin
gitadd | Add a | git add filename: | Add a file to the index:
file to | [filename] indicates git add filename
the the name .]
index of the file | Add all modified and new files
to be to the index:
added. git add .
git rm Delet | gitrm filename: | Delete a file or a directory:
ea [filename] indicates git rm filename
local the name
direct of the file
ory or or
file directory
to be
deleted.
git Clone | git clone VersionA | Clone a jQuery repository
clone a [VersionAddr .ddrjess: git clone https://github.com/
remot | ess] Lr;]dlcljaéis jquery/jquery.git
e e
reposi of the A directory is generated on the
tory remote local computer. The name of the
reposi directory is the same as that of
pository ‘
the cloned repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

357

Repo
User Guide

3 Old Version

Comm
and

Funct
ion

Format

Paramete
r

Example

git pull

Pull
the
branc
hin
the
remot
e
reposi
tory
to the
local
comp
uter
and
merg
eit
with a
specifi
ed
local
branc
h

git pull
[RemoteHost
name]
[RemoteBran
chname]:
[LocalBranch
name]

Pull the next branch from the
origin host, and merge it with
the local master branch.

git pull origin next:master

git diff

Comp
ares
files,
branc
hes,
direct
ories,
or
versio
ns

git diff

Compare the current branch
with the master branch:

git diff master

git
commit

Com
mit
files

git commit

Add a commit message:

git commit -m "commit
message"

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 358

Repo

User Guide 3 Old Version
Comm | Funct | Format Paramete | Example
and ion r
git Push | git push - If the remote branch name is not
push files [RemoteHost specified, the local branch is
to the | name] pushed to the remote branch
remot | [LocalBranch that it tracked (The two
e name] branches usually share a name).
reposi | [RemoteBran Such a remote branch will be
tory chname] created if it does not exist.
git push origin master
The local master branch is
pushed to the master branch in
the remote repository. If the
latter does not exist, it will be
created.
git Merg | git merge branch: Assuming that the current
merge |e [branch] indicates | branch is the develop branch.
branc the name | The latest commit to the master
hes of the branch is merged to the develop
source branch.
branch git merge master
git Check | git checkout | branchna | Check out the master branch:
checko |outa | [branchname me: git checkout master
ut branc |] indicates
h the name
of the
branch to
be
switched
to.
git log | List git log - List all logs:
the git log —-all
log
git Check | git status - git status
status the
status
git grep | Searc | git grep - Check whether there is any
h for character string containing
a hello:
chara git grep "hello"
cter
string

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd.

359

Repo

User Guide 3 Old Version
Comm | Funct | Format Paramete | Example
and ion r
git Displa | git show - e git show v1
show y The revisions attached with
object the v1 tag are displayed.
sor e git show HEAD
revisi Display the last commit of
ons the current branch.
e git show HEADA
Display the first parent of the
last commit of the current
branch.
e git show HEAD~4
Display the ancestor four
generations prior to the last
commit of the current branch.
git Com | git stash - e git stash
stash mand Saves and restores the work
S progress.
relate e git stash list
d to Lists all stashes.
stash .
es e git stash pop
Restore the latest stash and
remove it from the stash list.
e git stash apply
Restore the latest stash but
not remove it from the stash
list.
e it stash clear
Clear all stashes.
git ls- View | git Is-files - e git Is-files -d
files files View deleted files
e git Is-files -d |xargs git
checkout
Restore deleted files

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 360

Repo

User Guide 3 Old Version

Comm | Funct | Format Paramete | Example

and ion r

git Perfor | git remote - e git push origin

remote | m master:newbranch
opera Create the master branch in
tions the remote repository and
on push changes to it.
the e git remote add newbranch
remot Create the master branch in
e) the remote repository and
reposi push changes to it.
tory

e git remote show
List the number of remote
repositories

e git remote rm newbranch
Delete a new branch from the
remote repository

e git remote update
Update branches of all
remote repositories

3.13.6 Using Git LFS

Background

e Git Large File Storage (LFS) is supported on CodeHub. It stores large file such
as music, images, and videos outside a Git repository while users can still
easily perform operations on these files as if they were within the repository.
The Git extension allows more repository space and faster repository cloning,
and reduces the impact of large files on the Git performance.

e If the size of a file to be uploaded exceeds 100 MB, use Git LFS.
e Get started with Git LFS:
Installing Git LFS

Installing Git LFS

Configuring File Tracking
Committing Large Files

Cloning a Remote Repository Containing Git LFS Files

The following table describes the installation on different operating systems.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 361

Repo
User Guide 3 Old Version

Table 3-21 Installing Git LFS

Operati | Installation Method

ng
System

Windows | Download and install Git 1.8.5 or a later version. Run the following

command in the CLI:
git Ifs install

Linux Run the following commands in the CLI:

$ curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
$ sudo apt-get install git-lfs

$ git Ifs install

macOS Install the Homebrew software package management tool, and run

the following commands:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

$ brew install git-Ilfs

$ git Ifs install

Configuring File Tracking

The following figure shows how to configure the file tracking.

Table 3-22 Configuring file tracking

Scenarios | Method

Track Run the following command:
all .psd git Ifs track "*.psd"
files

Track a file | Run the following command:
git Ifs track "logo.png"

View Run git Ifs track or view the .gitattributes file.
tracked $ git Ifs track
files Listing tracked patterns
*.png (.gitattributes)

*.pptx (.gitattributes)
$ cat .gitattributes
*.png filter=Ifs diff=Ifs merge=lIfs -text
* pptx filter=Ifs diff=lfs merge=lIfs -text

Pushing Large Files

The .gitattributes file should be pushed to the repository along with the large
files. After the push, run git lfs Is-files to view the list of track files.

$ git push origin master

Git LFS: (2 of 2 files) 12.58 MB / 12.58 MB

Counting objects: 2, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 548 bytes | 0 bytes/s, done.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 362

Repo
User Guide

3 Old Version

Total 5 (delta 1), reused 0 (delta 0)

To <URL>

<SHA_ID1>.<SHA_ID2> master -> master
$ git fs [s-files

61758d79c4 * <FILE_NAME_1>
a227019fde * <FILE_NAME_2>

Cloning a Remote Repository Containing Git LFS Files

Run git Ifs clone to clone a remote repository that contains Git LFS files to the
local computer.

$ git lfs clone <URL>

Cloning into '<dirname>'

remote: Counting objects: 16,done.

remote: Compressing objects: 100% (12/12),done.
remote: Total 16 (delta 3), reused 9 (delta 1)
Receiving objects: 100% (16/16),done.

Resolving deltas: 100% (3/3),done.

Checking connectively...done.

Git LFS: (4 of 4 files) 0 B/ 100 B

3.13.7 Git Workflows

3.13.7.1 Overview

Create a Git workflow or branching policy that works best on your development
scenarios for effective version control, project process management, and team
collaboration.

There are four common Git workflows. The following sections describe their
processes, advantages, disadvantages, and some usage tips.

e Centralized workflow

e Feature branch workflow

e GitFlow (recommended)

e Forking workflow

Development teams can integrate CodeHub and the workflow that suits them best
to efficiently manage code and ensure code security. This enables them to focus

more on service development to achieve continuous integration and delivery, and
fast iteration.

3.13.7.2 Centralized Workflow

Process

The centralized workflow is suited to a development team that comprises around
5 members or has just migrated from SVN to Git. There is only one main branch
called master by default (trunk in SVN), which is the single entry point of changes.
However, this workflow is not recommended for teams who want to enjoy the
benefits of Git and team collaboration.

Developers clone the master branch from the central repository to their local
computers, make changes to the code, and push changes to the remote master
branch.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 363

Repo

User Guide 3 Old Version
Advantages

No branch interaction is involved.
Disadvantages

e Merge conflicts are frequent when the size of a development team is more
than 10 members. Much time is spent on conflict resolution.

e The master branch is unstable due to frequent pushes to it, making it difficult
to conduct integration tests.

Tips: Avoiding Conflicts and Unreadable Commit History

Before developing a new feature, developers must synchronize the local repository
to the central one so that they can work on the latest version. After the
development is complete, fetch updates from the central repository before
rebasing their own commits. In this way, the commits are applied on top of
changes that have been made and pushed to the central repository by other
developers. The commit history is linear and clear. The following figure shows an
example of the workflow.

Central repository

master _5‘—>.
Local repository of developer A
- master | 3

master

1. Developers A and B pull code from the central repository at the same time.
2. Developer A completes the work and pushes it to the central repository.

3. When ready to push commits, developer B needs to first run git pull -rebase
to apply commits on top of the changes made by developer A.

4. Developer B pushes the code to the central repository.

3.13.7.3 Feature Branch Workflow

Process

The core of the feature branch workflow is that every feature should be developed
on a separate branch pulled off the master branch. This creates a work silo for
every developer, ensures a stable master branch, and encourages team
collaboration.

Before developing a new feature, each developer should pull a new branch from
the master branch and give it a descriptive name, for example, video-output or
issue-#1061, to clearly state its purpose. By pushing local feature branches to the
central repository, developers can share their code with each other without
merging code into the master branch.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 364

Repo

User Guide 3 Old Version
Advantages
e Developers can create merge requests to have their code reviewed before
merge.
e Pushes to the master branch are less frequent.
Disadvantages

Only the master branch is used to incorporate changes. The instability of the
branch is further increased in large-scale development projects.

3.13.7.4 GitFlow

GitFlow is commonly seen in large-scale development projects. Each branch is
dedicated to a specific purpose and policies are made to regulate the interaction
between branches. The following figure shows the process of GitFlow.

Master

vi.1 v02 v1.0

4 4 Y

N_/

b

O

Release \ 9
7N

Develop = = >
N\ /

Feature >

Feature -> -5 =

Process

Master branch

The master branch is the production branch where code is ready to deploy. It
is the most stable branch because changes cannot be directly pushed to it.
Developers can only merge other branches to the master branch. It is often
set as a protected branch by default, on which only the project maintainer can
operate.

Hotfix branch

It is a temporary branch created off the master branch for fixing urgent bugs
in a live production version. After the bug is fixed, the hotfix branch gets
merged into the master branch and tagged with a version number. The bug
fix also needs to be merged to the develop branch.

Develop branch

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 365

Repo
User Guide 3 Old Version

A develop branch is pulled from the master branch and used to merge
features. It contains all the code ready to release for integration and system
testing.

e Release branch

When a new release is coming up, developers create a release branch from
the develop branch for release preparations, such as fixing minor bugs and
producing documents. Adding new features is not allowed. They should be
merged into the develop branch and wait for the next release. When the
preparation is complete, the release branch is merged into the master branch
and the commit is tagged with a version number. The changes made in the
release branch also need to be merged to the develop branch.

e Feature branch

Feature branches are pulled from the develop branch for feature
development. When the development is complete, they are merged into the
develop branch. Feature branches do not interact with the master branch.

Developers add new features in either of the following ways:

e Incorporate features after the features are reviewed by a dedicated reviewer.

Developers push feature branches to the central repository in CodeHub.

b. Developers then create merge requests for merging the feature branches
into the develop branch, and assign the requests to the reviewer.

(10 NOTE

CodeHub supports merge requests. Only repository administrators (project
managers, repository creators, and developers granted with repository
management permissions) can accept merge requests.

c. Reviewers review the merge requests. If the requests are approved, the
feature branches are merged into the develop branch and deleted.
Otherwise, the reviewer should explain the reasons of rejections.

e Integrate features after self-reviews.

a. Developers merge feature branches to the develop branch in the local
repository and delete the feature branches.

b. The local develop branch is then pushed to the central repository in
CodeHub.

Advantages

e With a branch dedicated for release preparation, a development team can
develop new features for a future release on the develop branch while
improving the version for the upcoming release. Release is visualized, which
means team members can have a clear view of the release status in commit
graphs.

e Hotfix branches, which can be seen as temporary release branches created off
the master branch, enable development teams to fix urgent bugs without
interrupting other works. Bug fixes do not have to wait until next release but
can be quickly deployed to the production version.

e Effective multi-branch mechanism allows for organized development process
especially for large-scale projects.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 366

Repo
User Guide 3 Old Version

e This workflow is more in line with the DevOps philosophies.

Disadvantages
e High learning thresholds.

e Impact will be greater if development teams do not comply with their
specified workflow policies.

3.13.7.5 Forking Workflow

The forking workflow is suitable for outsourcing, crowdsourcing, crowdfunding,
and open source projects. One of the features that distinguish this workflow is
that every contracting developer has a personal public repository, which is forked
from the project public repository. Developers can perform operations on the forks
without the need of being authorized by the project maintainer. The following
figure shows the process of the forking workflow.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 367

Repo
User Guide 3 Old Version

Push

Project public repository Project maintainer

Merge request

Personal publit repository

L o e e o o o] b — — = o

git clone

Contributor Contributor Contributor

Process

1. Developers fork the project public repository to create personal public ones.

Issue 01 (2023-08-07) Copyright © Huawei Technologies Co., Ltd. 368

Repo

User Guide 3 Old Version
2. The personal public repositories are cloned to their local computers for
development.
3. After the development is complete, developers push changes to their personal
public repositories.
4. Developers file merge requests to the project maintainer for merge to the
project public repository.
5. The project maintainer pulls changes to the local computer and reviews the
code. If the code is approved, it is pushed to the project public repository.
{11 NOTE
If the code written by a developer is not approved and therefore, not merged to the project
public repository, other developers can still pull the code from the personal public
repository of the developer for references.
Advantages
e Code collaboration is easier. Developers can share their code by pushing it to
their personal public repositories for others to pull, unlike some workflows
where developers cannot see others' work until it is merged into the project
repository.
e Project maintainers do not have to grant permissions on project public
repositories to every contributor.
e Merge requests serve as an important guard for code security.
e The three workflows introduced previously can be incorporated into the
forking workflow based on project requirements.
Disadvantages

It takes more steps and time before the code of developers gets merged into the
project repository.

Issue 01 (2023-08-07)

Copyright © Huawei Technologies Co., Ltd. 369

	Contents
	1 Before You Start
	2 New Version (Recommended)
	2.1 Overview
	2.2 Git Installation and Configuration
	2.2.1 Installing and Configuring Git
	2.2.2 Installing Git Bash for Windows
	2.2.3 Installing TortoiseGit for Windows
	2.2.4 Installing Git for Linux
	2.2.5 Installing Git for macOS

	2.3 Setting SSH Key or HTTPS Password for CodeArts Repo Repository
	2.3.1 Overview
	2.3.2 SSH Keys
	2.3.3 HTTPS Password

	2.4 Migrating Data to CodeArts Repo
	2.4.1 Overview
	2.4.2 Migrating an SVN Repository to CodeArts Repo
	2.4.3 Importing a Remote Git Repository to CodeArts Repo
	2.4.4 Uploading Local Code to CodeArts Repo

	2.5 Creating a CodeArts Repo Repository
	2.5.1 Overview
	2.5.2 Creating an Empty Repository
	2.5.3 Creating a Repository Using a Template
	2.5.4 Importing an External Repository
	2.5.5 Forking a Repository

	2.6 Associating the CodeArts Repo Repository
	2.7 Cloning or Downloading Code from CodeArts Repo to a Local PC
	2.7.1 Overview
	2.7.2 Using SSH to Clone Code from CodeArts Repo to a Local PC
	2.7.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
	2.7.4 Downloading a Code Package on a Browser

	2.8 Using CodeArts Repo
	2.8.1 Viewing the Repository List
	2.8.2 Viewing Repository Details
	2.8.3 Viewing Repository Homepage
	2.8.4 Managing Code Files
	2.8.4.1 Managing Files
	2.8.4.2 Managing Commits
	2.8.4.3 Managing Branches
	2.8.4.4 Managing Tags
	2.8.4.5 Managing Comparison

	2.8.5 Managing MRs
	2.8.5.1 Managing MRs
	2.8.5.2 Resolving Code Conflicts in an MR
	2.8.5.3 Detailed Description of Review Comments Gate
	2.8.5.4 Detailed Description of Pipeline Gate
	2.8.5.5 Detailed Description of E2E Ticket Number Association Gate
	2.8.5.6 Detailed Description of Review Gate
	2.8.5.7 Detailed Description of Approval Gate

	2.8.6 Viewing Review Records of a Repository
	2.8.7 Viewing Associated Work Items
	2.8.7.1 Introduction
	2.8.7.2 Commit Association

	2.8.8 Viewing Repository Statistics
	2.8.9 Viewing Activities
	2.8.10 Managing Repository Members
	2.8.10.1 IAM Users, Project Members, and Repository Members
	2.8.10.2 Configuring Member Management
	2.8.10.3 Repository Member Permissions

	2.9 Configuring CodeArts Repo
	2.9.1 General Settings
	2.9.1.1 Repository Information
	2.9.1.2 Notifications

	2.9.2 Repository Management
	2.9.2.1 Repositories
	2.9.2.2 Space Freeing
	2.9.2.3 Synchronization
	2.9.2.4 Submodules
	2.9.2.5 Repository Backup
	2.9.2.6 Repository Synchronization

	2.9.3 Policy Settings
	2.9.3.1 Protected Branches
	2.9.3.2 Protected Tags
	2.9.3.3 Commit Rules
	2.9.3.4 Merge Requests
	2.9.3.5 Review Comments
	2.9.3.6 MR Evaluation

	2.9.4 Service Integration
	2.9.4.1 E2E Settings
	2.9.4.2 Webhooks

	2.9.5 Template Management
	2.9.5.1 MR Templates
	2.9.5.2 Review Comment Templates

	2.9.6 Security Management
	2.9.6.1 Deploy Keys
	2.9.6.2 IP Address Whitelists
	2.9.6.3 Risky Operations
	2.9.6.4 Watermarks
	2.9.6.5 Repository Locking
	2.9.6.6 Audit Logs

	2.10 Submitting Code to the CodeArts Repo
	2.10.1 Creating a Commit
	2.10.2 Transmitting and Storing a File in Encryption Mode
	2.10.3 Viewing Commit History
	2.10.4 Pushing Code to CodeArts Repo Using Eclipse

	2.11 More About Git
	2.11.1 Using the Git Client
	2.11.2 Setting Password-Free Access via HTTPS
	2.11.3 Using the TortoiseGit Client
	2.11.4 Use Cases on the Git Client
	2.11.4.1 Uploading and Downloading Code
	2.11.4.2 Committing Letter Case Changes in File Names to the Server
	2.11.4.3 Setting the Line Ending Conversion
	2.11.4.4 Committing Hidden Files
	2.11.4.5 Pushing a File That Has Been Changed on the Server

	2.11.5 Common Git Commands
	2.11.6 Using Git LFS
	2.11.7 Git Workflows
	2.11.7.1 Overview
	2.11.7.2 Centralized Workflow
	2.11.7.3 Branch Development Workflow
	2.11.7.4 GitFlow
	2.11.7.5 Forking Workflow

	3 Old Version
	3.1 Overview
	3.2 Git Installation and Configuration
	3.2.1 Overview
	3.2.2 Installing Git Bash for Windows
	3.2.3 Installing TortoiseGit for Windows
	3.2.4 Installing Git for Linux
	3.2.5 Installing Git for macOS

	3.3 SSH Keys and HTTPS Passwords
	3.3.1 Overview
	3.3.2 SSH Keys
	3.3.3 HTTPS Passwords

	3.4 Cloud Repository Creation
	3.4.1 Overview
	3.4.2 Creating an Empty Repository
	3.4.3 Creating a Repository Using a Template
	3.4.4 Importing an External Repository
	3.4.5 Forking a Repository

	3.5 Cloud Repository Clone/Download to a Local Computer
	3.5.1 Overview
	3.5.2 Using SSH to Clone a Cloud Repository to a Local Computer
	3.5.3 Using HTTPS to Clone a Cloud Repository to a Local Computer
	3.5.4 Downloading a Code Package on a Browser

	3.6 Repository Migration
	3.6.1 Overview
	3.6.2 Migrating an SVN Repository to CodeHub
	3.6.3 Importing a Remote Git Repository to CodeHub
	3.6.4 Uploading Local Code to CodeHub

	3.7 Cloud Repositories
	3.7.1 Repository List
	3.7.2 Viewing Repository Details
	3.7.3 Managing Repository Files in Console
	3.7.4 Viewing Activities
	3.7.5 Viewing Review Records of a Repository
	3.7.6 Viewing Repository Statistics
	3.7.7 Viewing the Commit Graph of a Repository

	3.8 Associating Cloud Repositories
	3.9 Cloud Repository Management
	3.9.1 General Settings
	3.9.1.1 Repository Information
	3.9.1.2 Merge Requests
	3.9.1.3 Commit Rules
	3.9.1.4 Notifications
	3.9.1.5 Repository Locking
	3.9.1.6 Repository Synchronization

	3.9.2 Repository Management
	3.9.2.1 Default Branch
	3.9.2.2 Protected Branches
	3.9.2.3 Submodules
	3.9.2.4 Webhook
	3.9.2.5 Space Freeing
	3.9.2.6 Backup
	3.9.2.7 Copy Repository Settings

	3.9.3 Security Management
	3.9.3.1 Deploy Keys
	3.9.3.2 Configuring IP Address Whitelist
	3.9.3.3 Risky Operations
	3.9.3.4 Operational Logs
	3.9.3.5 Watermarks

	3.10 Committing Code to the Cloud
	3.10.1 Creating a Commit
	3.10.2 Transmitting and Storing a File in Encryption Mode
	3.10.3 Viewing Commit History
	3.10.4 Pushing Code to CodeHub Using Eclipse

	3.11 Team-based Development on CodeHub
	3.11.1 Managing Branches
	3.11.2 Managing Tags
	3.11.3 Merge Request Approval
	3.11.4 Associating Work Items
	3.11.5 Resolving Code Commit Conflicts

	3.12 Member and Permission Management
	3.12.1 IAM Users, Project Members, and Repository Members
	3.12.2 Managing Repository Members
	3.12.3 Repository Member Permissions

	3.13 More About Git
	3.13.1 Using the Git Client
	3.13.2 Setting Password-Free Access via HTTPS
	3.13.3 Using the TortoiseGit Client
	3.13.3.1 Generating a PPK File
	3.13.3.2 Creating a Git Repository
	3.13.3.3 Cloning a Repository
	3.13.3.4 Pushing a Repository

	3.13.4 Use Cases on the Git Client
	3.13.4.1 Uploading and Downloading Code
	3.13.4.2 Committing Letter Case Changes in File Names to the Server
	3.13.4.3 Setting the Line Ending Conversion
	3.13.4.4 Committing Hidden Files
	3.13.4.5 Pushing a File That Has Been Changed on the Server

	3.13.5 Common Git commands
	3.13.6 Using Git LFS
	3.13.7 Git Workflows
	3.13.7.1 Overview
	3.13.7.2 Centralized Workflow
	3.13.7.3 Feature Branch Workflow
	3.13.7.4 GitFlow
	3.13.7.5 Forking Workflow

